Skip to main content
Log in

Self-competing and Coupled Effect of Laser-Engraved Counterface Groove Depth and Density on Wear of Alumina PTFE

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Polymeric solid lubricants rely on the deposition of a debris-formed transfer film on the usually metallic counterface to reduce wear and friction. Debris retention at the sliding surface is determined by the interactions between debris and roughness asperities which are complex functions of debris size and roughness profile. Recent works found pre-existing, sandpaper-lapped counterface roughness grooves perpendicular to the sliding direction could significantly improve debris retention and reduce the wear rate of an alumina PTFE solid lubricant by 70%. In this paper, we aimed to test the independent effects of roughness groove depth and density on debris retention and wear performance of a well-studied alumina PTFE solid lubricant using laser-textured counterfaces with independently varied groove depth and interval. All grooves in this study were engraved perpendicular to the sliding direction. The results suggested both groove depth and interval have self-competing effect on wear due to the in situ grounding and roughness alignment of the counterface topography during sliding and may compete or cooperate with each other in determining solid lubricant wear. A new surface directionality parameter was defined to quantify the in situ counterface roughness alignment which increased proportionally with increased composite wear volume at low-wear transition. A conceptual framework was proposed to illustrate the relations between counterface texture, transient wear volume, surface directionality and counterface abrasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Image adapted from [32] with permission

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. One can also define surface directionality using Eq. 1 and other roughness parameters.

References

  1. Li, F., Hu, K.-A., Li, J.-L., Zhao, B.-Y.: The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear 249, 877–882 (2001)

    Article  CAS  Google Scholar 

  2. Chen, W.X., Li, F., Han, G., Xia, J.B., Wang, L.Y., Tu, J.P., et al.: Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 15, 275–278 (2003)

    Article  CAS  Google Scholar 

  3. Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P., Schadler, L.S.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254, 573–580 (2003)

    Article  CAS  Google Scholar 

  4. Burris, D.L., Sawyer, W.G.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. Trans. 48, 147–153 (2005)

    Article  CAS  Google Scholar 

  5. Bhimaraj, P., Burris, D.L., Action, J., Sawyer, W.G., Toney, C.G., Siegel, R.W., et al.: Effect of matrix morphology on the wear and friction behavior of alumina nanoparticle/poly(ethylene) terephthalate composites. Wear 258, 1437–1443 (2005)

    Article  CAS  Google Scholar 

  6. Burris, D.L., Sawyer, W.G.: A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261, 410–418 (2006)

    Article  CAS  Google Scholar 

  7. Burris, D.L., Sawyer, W.G.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006)

    Article  CAS  Google Scholar 

  8. Burris, D.L.: Wear-resistance mechanisms in polytetrafluoroethylene (PTFE) based tribological nanocomposites. University of Florida, Gainesville (2006)

    Google Scholar 

  9. Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2007)

    Article  CAS  Google Scholar 

  10. Bhimaraj, P., Burris, D., Sawyer, W.G., Toney, C.G., Siegel, R.W., Schadler, L.S.: Tribological investigation of the effects of particle size, loading and crystallinity on poly(ethylene) terephthalate nanocomposites. Wear 264, 632–637 (2008)

    Article  CAS  Google Scholar 

  11. Ye, J., Khare, H.S., Burris, D.L.: Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 297, 1095–1102 (2013)

    Article  CAS  Google Scholar 

  12. Ye, J., Khare, H.S., Burris, D.L.: Quantitative characterization of solid lubricant transfer film quality. Wear 316, 133–143 (2014)

    Article  CAS  Google Scholar 

  13. Blanchet, T.A., Kennedy, F.E.: Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 153, 229–243 (1992)

    Article  CAS  Google Scholar 

  14. McElwain, S.E., Blanchet, T.A., Schadler, L.S., Sawyer, W.G.: Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. Trans. 51, 247–253 (2008)

    Article  CAS  Google Scholar 

  15. Blanchet, T.A., Kandanur, S.S., Schadler, L.S.: Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 40, 11–21 (2009)

    Article  Google Scholar 

  16. Laux, K.A., Schwartz, C.J.: Influence of linear reciprocating and multi-directional sliding on PEEK wear performance and transfer film formation. Wear 301, 727–734 (2013)

    Article  CAS  Google Scholar 

  17. Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1995)

    Google Scholar 

  18. Menezes, P.L.: Self-lubricating Composites. Springer, Berlin (2018)

    Book  Google Scholar 

  19. Burris, D.L., Zhao, S., Duncan, R., Lowitz, J., Perry, S.S., Schadler, L.S., et al.: A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 267, 653–660 (2009)

    Article  CAS  Google Scholar 

  20. Ye, J., Moore, A.C., Burris, D.L.: Transfer film tenacity: a case study using ultra-low-wear alumina–PTFE. Tribol. Lett. 59, 1–11 (2015)

    Article  CAS  Google Scholar 

  21. Ye, J., Zhang, H., Liu, X., Liu, K.: Low wear steel counterface texture design: a case study using micro-pits texture and alumina–PTFE nanocomposite. Tribol. Lett. 65, 165 (2017)

    Article  Google Scholar 

  22. Harris, K.L., Pitenis, A.A., Sawyer, W.G., Krick, B.A., Blackman, G.S., Kasprzak, D.J., et al.: PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules (2015). https://doi.org/10.1021/acs.macromol.5b00452

    Article  Google Scholar 

  23. Harris, K.L., Curry, J.F., Pitenis, A.A., Rowe, K.G., Sidebottom, M.A., Sawyer, W.G., et al.: Wear debris mobility, aligned surface roughness, and the low wear behavior of filled polytetrafluoroethylene. Tribol. Lett. 60, 1–8 (2015)

    Article  Google Scholar 

  24. Krick, B.A., Ewin, J.J., Blackman, G.S., Junk, C.P., Gregory Sawyer, W.: Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribol. Int. 51, 42–46 (2012)

    Article  CAS  Google Scholar 

  25. Krick, B.A., Ewin, J.J., McCumiskey, E.J.: Tribofilm formation and run-in behavior in ultra-low-wearing polytetrafluoroethylene (PTFE) and alumina nanocomposites. Tribol. Trans. 57, 1058–1065 (2014)

    Article  CAS  Google Scholar 

  26. Krick, B.A., Pitenis, A.A., Harris, K.L., Junk, C.P., Sawyer, W.G., Brown, S.C., et al.: Ultralow wear fluoropolymer composites: nanoscale functionality from microscale fillers. Tribol. Int. 95, 245–255 (2016)

    Article  CAS  Google Scholar 

  27. Pitenis, A.A., Ewin, J.J., Harris, K.L., Sawyer, W.G., Krick, B.A.: In vacuo tribological behavior of polytetrafluoroethylene (PTFE) and alumina nanocomposites: the importance of water for ultralow wear. Tribol. Lett. 53, 189–197 (2014)

    Article  CAS  Google Scholar 

  28. Pitenis, A.A., Harris, K.L., Junk, C.P., Blackman, G.S., Sawyer, W.G., Krick, B.A.: Ultralow wear PTFE and alumina composites: it is all about tribochemistry. Tribol. Lett. 57, 4 (2015)

    Article  Google Scholar 

  29. Sawyer, W.G., Argibay, N., Burris, D.L., Krick, B.A.: Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44, 395–427 (2014)

    Article  Google Scholar 

  30. Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984)

    Article  CAS  Google Scholar 

  31. Schwartz, C.J., Bahadur, S.: Studies on the tribological behavior and transfer film–counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear 237, 261–273 (2000)

    Article  CAS  Google Scholar 

  32. Ye, J., Tao, B., Sun, W., Haidar, D.R., Alam, K.I., Liu, K., et al.: The competing effects of counterface peaks and valleys on the wear and transfer of ultra-low wear alumina–PTFE. Tribol. Lett. 66, 12 (2018)

    Article  Google Scholar 

  33. Franklin, S.E., de Kraker, A.: Investigation of counterface surface topography effects on the wear and transfer behaviour of a POM–20% PTFE composite. Wear 255, 766–773 (2003)

    Article  CAS  Google Scholar 

  34. Wieleba, W.: The statistical correlation of the coefficient of friction and wear rate of PTFE composites with steel counterface roughness and hardness. Wear 252, 719–729 (2002)

    Article  CAS  Google Scholar 

  35. Ye, J., Burris, D.L., Xie, T.: A review of transfer films and their role in ultra-low-wear sliding of polymers. Lubricants 4, 4 (2016)

    Article  Google Scholar 

  36. Urueña, J.M., Pitenis, A.A., Harris, K.L., Sawyer, W.G.: Evolution and wear of fluoropolymer transfer films. Tribol. Lett. 57, 9 (2015)

    Article  Google Scholar 

  37. Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36, 81–87 (2009)

    Article  Google Scholar 

  38. Ye, J., Sun, W., Zhang, Y., Liu, X., Liu, K.: Measuring evolution of transfer film–substrate interface using low wear alumina PTFE. Tribol. Lett. 66, 100 (2018)

    Article  Google Scholar 

  39. Makinson, K.R., Tabor, D.: Friction and transfer of polytetrafluoroethylene. Nature 201, 464–466 (1964)

    Article  CAS  Google Scholar 

  40. Blanchet, T.A., Kennedy, F.E., Jayne, D.T.: XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts. Tribol. Trans. 36, 535–544 (1993)

    Article  CAS  Google Scholar 

  41. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51875153, 51875152 and 51505117) and the Natural Science Foundation of Anhui Province (Grant no. 1608085QE98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Zhang, K., Gao, T. et al. Self-competing and Coupled Effect of Laser-Engraved Counterface Groove Depth and Density on Wear of Alumina PTFE. Tribol Lett 67, 56 (2019). https://doi.org/10.1007/s11249-019-1171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1171-x

Keywords

Navigation