Skip to main content
Log in

Influence of Surface Design on the Solid Lubricity of Carbon Nanotubes-Coated Steel Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Topographically designed surfaces are able to store solid lubricants, preventing their removal out of the tribological contact and thus significantly prolonging the lubrication lifetime of a surface. The present study provides a systematic evaluation of the influence of surface structure design on the solid lubrication effect of multi-walled carbon nanotubes (MWCNT) coated steel surfaces. For this purpose, direct laser writing using a femtosecond pulsed laser system is deployed to create surface structures, which are subsequently coated with MWCNT by electrophoretic deposition. The structural depth or aspect ratio of the structures and thus the lubricant storage volume of the solid lubricant is varied. The frictional behavior of the surfaces is recorded using a ball-on-disk tribometer and the surfaces are thoroughly characterized by complementary characterization techniques. Efficient lubrication is achieved for all MWCNT-coated surfaces. However, and in contrast to what would be expected, it is shown that deeper structures with larger lubricant storage volume do not lead to an extended lubrication lifetime and behave almost equally to the coated unstructured surfaces. This can be attributed, among other things, to differences in the final surface roughness of the structures and the slope steepness of the structures, which prevent efficient lubricant supply into the contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127, 248 (2005). https://doi.org/10.1115/1.1828070

    Article  Google Scholar 

  2. Gachot, C., Rosenkranz, A., Reinert, L., Ramos-Moore, E., Souza, N., Müser, M.H., et al.: Dry friction between laser-patterned surfaces: Role of alignment, structural wavelength and surface chemistry. Tribol. Lett. 49, 193–202 (2013). https://doi.org/10.1007/s11249-012-0057-y

    Article  Google Scholar 

  3. Rosenkranz, A., Reinert, L., Gachot, C., Mücklich, F.: Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions. Wear. 318, 49–61 (2014). https://doi.org/10.1016/j.wear.2014.06.016

    Article  Google Scholar 

  4. Szurdak, A., Rosenkranz, A., Gachot, C., Hirt, G., Mücklich, F.: Manufacturing and tribological investigation of hot micro-coined lubrication pockets. Key Eng. Mater. 611–612, 417–424 (2014). https://doi.org/10.4028/www.scientific.net/KEM.611-612.417

    Article  Google Scholar 

  5. Koszela, W., Pawlus, P., Galda, L.: The effect of oil pockets size and distribution on wear in lubricated sliding. Wear. 263, 1585–1592 (2007). https://doi.org/10.1016/j.wear.2007.01.108

    Article  Google Scholar 

  6. Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36, 857–864 (2003). https://doi.org/10.1016/S0301-679X(03)00104-X

    Article  Google Scholar 

  7. Pawlus, P.: Effects of honed cylinder surface topography on the wear of piston-piston ring-cylinder assemblies under artificially increased dustiness conditions. Tribol. Int. 26, 49–55 (1993). https://doi.org/10.1016/0301-679X(93)90038-3

    Article  Google Scholar 

  8. Lasagni, A., Roch, T., Bieda, M., Benke, D., Beyer, E.: High speed surface functionalization using direct laser interference patterning, towards 1 m 2 /min fabrication speed with sub-µm resolution. Proc. SPIE. 8968, 89680A (2014). https://doi.org/10.1117/12.2041215

    Article  Google Scholar 

  9. Mücklich, F., Lasagni, A., Daniel, C.: Laser Interference Metallurgy – using interference as a tool for micro/nano structuring. Zeitschrift. Für. Met. 97, 1337–1344 (2006)

    Google Scholar 

  10. Rosenkranz, A., Heib, T., Gachot, C., Mücklich, F.: Oil film lifetime and wear particle analysis of laser-patterned stainless steel surfaces. Wear. 334–335, 1–12 (2015). https://doi.org/10.1016/j.wear.2015.04.006

    Article  Google Scholar 

  11. Rosenkranz, A., Krupp, F., Reinert, L., Mücklich, F., Sauer, B.: Tribological performance of laser-patterned chain links—Influence of pattern geometry and periodicity. Wear. 370–371, 51–58 (2017). https://doi.org/10.1016/j.wear.2016.11.006

    Article  Google Scholar 

  12. Grützmacher, P.G., Rosenkranz, A., Gachot, C.: How to guide lubricants—tailored laser surface patterns on stainless steel. Appl. Surf. Sci. 370, 59–66 (2016). https://doi.org/10.1016/j.apsusc.2016.02.115

    Article  Google Scholar 

  13. Rapoport, L., Moshkovich, A., Perfilyev, V., Lapsker, I., Halperin, G., Itovich, Y., et al.: Friction and wear of MoS2 films on laser textured steel surfaces. Surf. Coatings Technol. 202, 3332–3340 (2008)

    Article  Google Scholar 

  14. Cho, M.H., Ju, J., Kim, S.J., Jang, H.: Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear. 260, 855–860 (2006). https://doi.org/10.1016/j.wear.2005.04.003

    Article  Google Scholar 

  15. Scharf, T.W., Prasad, S.V.: Solid lubricants: A review. J. Mater. Sci. 48, 511–531 (2013). https://doi.org/10.1007/s10853-012-7038-2

    Article  Google Scholar 

  16. Zhai, W., Srikanth, N., Kong, L.B., Zhou, K.: Carbon nanomaterials in tribology. Carbon N Y. 119, 150–171 (2017). https://doi.org/10.1016/j.carbon.2017.04.027

    Article  Google Scholar 

  17. Chen, W., Tu, J., Wang, L., Gan, H., Xu, Z.: Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon N Y 41, 215–222 (2003)

    Article  Google Scholar 

  18. Kim, K.T., Cha, S., Hong, S.H.: Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A. 449–451, 46–50 (2007). https://doi.org/10.1016/j.msea.2006.02.310

    Article  Google Scholar 

  19. Scharf, T., Neira, A., Hwang, J.Y., Tiley, J., Banerjee, R.: Self-lubricating carbon nanotube reinforced nickel matrix composites. J. Appl. Phys. 106, 13508 (2009). https://doi.org/10.1063/1.3158360

    Article  Google Scholar 

  20. Tan, J., Yu, T., Xu, B., Yao, Q.: Microstructure and wear resistance of nickel–carbon nanotube composite coating from brush plating technique. Tribol. Lett. 21, 107–111 (2006). https://doi.org/10.1007/s11249-006-9025-8

    Article  Google Scholar 

  21. Suárez, S., Rosenkranz, A., Gachot, C., Mücklich, F.: Enhanced tribological properties of MWCNT/Ni bulk composites - Influence of processing on friction and wear behaviour. Carbon N Y. 66, 164–171 (2014). https://doi.org/10.1016/j.carbon.2013.08.054

    Article  Google Scholar 

  22. Reinert, L., Suárez, S., Rosenkranz, A.: Tribo-Mechanisms of carbon nanotubes: friction and wear behavior of CNT-reinforced nickel matrix composites and cnt-coated bulk nickel. Lubricants. 4, 1–15 (2016). https://doi.org/10.3390/lubricants4020011

    Article  Google Scholar 

  23. Miyoshi, K., Street, K.W., Vander Wal, R.L., Andrews, R., Sayir, A.: Solid lubrication by multiwalled carbon nanotubes in air and in vacuum. Tribol. Lett. 19, 191–201 (2005). https://doi.org/10.1007/s11249-005-6146-4

    Article  Google Scholar 

  24. Hirata, A., Yoshioka, N.: Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition. Tribol. Int. 37, 893–898 (2004)

    Article  Google Scholar 

  25. Hu, J.J., Jo, S.H., Ren, Z.F., Voevodin, A.A., Zabinski, J.S.: Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel. Tribol. Lett. 19, 119–125 (2005). https://doi.org/10.1007/s11249-005-5091-6

    Article  Google Scholar 

  26. Dickrell, P.L., Pal, S.K., Bourne, G.R., Muratore, C., Voevodin, A.A., Ajayan, P.M., et al.: Tunable friction behavior of oriented carbon nanotube films. Tribol. Lett. 24, 85–90 (2006). https://doi.org/10.1007/s11249-006-9162-0

    Article  Google Scholar 

  27. Reinert, L., Schütz, S., Suárez, S., Mücklich, F.: Influence of surface roughness on the lubrication effect of carbon nanoparticle-coated steel surfaces. Tribol. Lett. 66, 45 (2018). https://doi.org/10.1007/s11249-018-1001-6

    Article  Google Scholar 

  28. Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon N Y. 43, 1660–1666 (2005). https://doi.org/10.1016/j.carbon.2005.01.044

    Article  Google Scholar 

  29. Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25, 247–253 (2007). https://doi.org/10.1007/s11249-006-9176-7

    Article  Google Scholar 

  30. Lu, H.F., Fei, B., Xin, J.H., Wang, R.H., Li, L., Guan, W.C.: Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion. Carbon N Y. 45, 936–942 (2007). https://doi.org/10.1016/j.carbon.2007.01.001

    Article  Google Scholar 

  31. Kristiansen, K., Zeng, H., Wang, P., Israelachvili, J.N.: Microtribology of aqueous carbon nanotube dispersions. Adv. Funct. Mater. 21, 4555–4564 (2011). https://doi.org/10.1002/adfm.201101478

    Article  Google Scholar 

  32. Falvo, M.R., Taylor, R.M., Helser, A., Chi, V., Brooks, F.P., Washburn, S., et al.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature. 397, 236–238 (1999). https://doi.org/10.1038/16662

    Article  Google Scholar 

  33. Chen, X.H., Chen, C.S., Xiao, H.N., Liu, H.B., Zhou, L.P., Li, S.L., et al.: Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribol. Int. 39, 22–28 (2006). https://doi.org/10.1016/j.triboint.2004.11.008

    Article  Google Scholar 

  34. Dickrell, P.L., Sinnott, S.B., Hahn, D.W., Raravikar, N.R., Schadler, L.S., Ajayan, P.M., et al.: Frictional anisotropy of oriented carbon nanotube surfaces. Tribol. Lett 18, 59–62 (2005)

    Article  Google Scholar 

  35. Majumder, M., Rendall, C., Li, M., Behabtu, N., Eukel, J.A., Hauge, R.H., et al.: Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 65, 2000–2008 (2010). https://doi.org/10.1016/j.ces.2009.11.042

    Article  Google Scholar 

  36. Mirri, F., Ma, A.W.K., Hsu, T.T., Behabtu, N., Eichmann, S.L., Young, C.C., et al.: High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano. 6, 9737–9744 (2012). https://doi.org/10.1021/nn303201g

    Article  Google Scholar 

  37. Bardecker, J.A., Afzali, A., Tulevski, G.S., Graham, T., Hannon, J.B., Jen, A.K.Y.: Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer. J. Am. Chem. Soc. 130, 7226–7227 (2008). https://doi.org/10.1021/ja802407f

    Article  Google Scholar 

  38. De Nicola, F., Castrucci, P., Scarselli, M., Nanni, F., Cacciotti, I., De Crescenzi, M.: Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel. Nanotechnology. 26, 145701 (2015). https://doi.org/10.1088/0957-4484/26/14/145701

    Article  Google Scholar 

  39. Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Jane Minay, E., Shaffer, M.S.P.: Electrophoretic deposition of carbon nanotubes. Carbon N Y. 44, 3149–3160 (2006). https://doi.org/10.1016/j.carbon.2006.06.021

    Article  Google Scholar 

  40. Thomas, B.J.C., Boccaccini, A.R., Shaffer, M.S.P.: Multi-walled carbon nanotube coatings using electrophoretic deposition (EPD). J. Am. Ceram. Soc. 88, 980–982 (2005)

    Article  Google Scholar 

  41. Cho, J., Konopka, K., Rozniatowski, K., Garcia-Lecina, E., Shaffer, M.S.P., Boccaccini, A.R.: Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon N Y. 47, 58–67 (2009). https://doi.org/10.1016/j.carbon.2008.08.028

    Article  Google Scholar 

  42. Van der Biest, O.O., Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327–352 (1999). https://doi.org/10.1146/annurev.matsci.29.1.327

    Article  Google Scholar 

  43. Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1987–2002 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08929.x

    Article  Google Scholar 

  44. Boccaccini, A.R., Zhitomirsky, I.: Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr. Opin. Solid State Mater. Sci. 6, 251–260 (2002)

    Article  Google Scholar 

  45. Reinert, L., Lasserre, F., Gachot, C., Grützmacher, P., MacLucas, T., Souza, N., et al.: Long-lasting solid lubrication by CNT-coated patterned surfaces. Sci. Rep. 7, 42873 (2017). https://doi.org/10.1038/srep42873

    Article  Google Scholar 

  46. Lasagni, A.: Advanced design of periodical structures by laser interference metallurgy in the micro / nano scale on macroscopic areas. Saarland University, Saarbrücken (2006)

    Google Scholar 

  47. Lasagni, A., D’Alessandria, M., Giovanelli, R., Mücklich, F.: Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy. Appl Surf Sci. 254, 930–936 (2007). https://doi.org/10.1016/j.apsusc.2007.08.010

    Article  Google Scholar 

  48. Leitz, K.-H., Redlingshöfer, B., Reg, Y., Otto, A., Schmidt, M.: Metal Ablation with Short and Ultrashort Laser Pulses. Phys Procedia. 12, 230–238 (2011). https://doi.org/10.1016/j.phpro.2011.03.128

    Article  Google Scholar 

  49. Ferrari, A., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  50. Thomas, B.J.C., Shaffer, M.S.P., Freeman, S., Koopman, M., Chawla, K.K., Boccaccini, A.R.: Electrophoretic Deposition of Carbon Nanotubes on Metallic Surfaces. Key Eng. Mater. 314, 141–146 (2006). https://doi.org/10.4028/www.scientific.net/KEM.314.141

    Article  Google Scholar 

  51. Le Harzic, R., Breitling, D., Weikert, M., Sommer, S., Föhl, C., Dausinger, F., et al.: Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses. Appl Phys A. 80, 1589–1593 (2005). https://doi.org/10.1007/s00339-005-3206-4

    Article  Google Scholar 

  52. Johnson, K.L.: Contact Mechanics, 1st edn. Cambridge University Press, New York (1985)

    Book  Google Scholar 

  53. Bonse, J., Krüger, J., Höhm, S., Rosenfeld, A.: Femtosecond laser-induced periodic surface structures. J Laser Appl. 24, 42006 (2012). https://doi.org/10.2351/1.4712658

    Article  Google Scholar 

  54. Raillard, B., Gouton, L., Ramos-Moore, E., Grandthyll, S., Müller, F., Mücklich, F.: Ablation effects of femtosecond laser functionalization on steel surfaces. Surf Coatings Technol. 207, 102–109 (2012). https://doi.org/10.1016/j.surfcoat.2012.06.023

    Article  Google Scholar 

  55. Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E., Meunier, V.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon N Y. 49, 2581–2602 (2011). https://doi.org/10.1016/j.carbon.2011.03.028

    Article  Google Scholar 

  56. DiLeo, R.A., Landi, B.J., Raffaelle, R.P.: Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 2007;101. https://doi.org/10.1063/1.2712152

  57. Shimada, T., Sugai, T., Fantini, C., Souza, M., Cançado, L.G., Jorio, A., et al.: Origin of the 2450 cm-1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon N Y. 43, 1049–1054 (2005). https://doi.org/10.1016/j.carbon.2004.11.044

    Article  Google Scholar 

  58. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Jorio a. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005). https://doi.org/10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  59. Oh, S.J., Cook, D.C., Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112, 59–66 (1998)

    Article  Google Scholar 

  60. McCarty, K.F., Boehme, D.R.: A Raman study of the systems Fe3 – xCrxO4 and Fe2 – xCrxO3. J Solid State Chem. 79, 19–27 (1989). https://doi.org/10.1016/0022-4596(89)90245-4

    Article  Google Scholar 

  61. Farrow, R., Benner, R., Nagelberg, A., Mattern, P.: Characterization of surface oxides by Raman spectroscopy. Thin Solid Films. 73, 353–358 (1980). https://doi.org/10.1016/0040-6090(80)90499-X

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by funding from the Deutsche Forschungsgemeinschaft (DFG, project: MU 959/38-1 and SU 911/1-1). The authors wish to acknowledge the EFRE Funds of the European Commission for support of activities within the AME-Lab project. This work was supported by the CREATe-Network Project, Horizon 2020 of the European Commission (RISE Project No. 644013). We thank Prof. Volker Presser (INM, Saarbrücken) for providing access to the Raman spectrometer and SFB 926 "Microscale Morphology of Component Surfaces" CRC 926 for measurements by Auger electron spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, C., Reinert, L., MacLucas, T. et al. Influence of Surface Design on the Solid Lubricity of Carbon Nanotubes-Coated Steel Surfaces. Tribol Lett 66, 89 (2018). https://doi.org/10.1007/s11249-018-1044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1044-8

Keywords

Navigation