Skip to main content
Log in

Solid lubricants: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fundamental mechanisms of solid lubrication are reviewed with examples from well-known solid lubricants like the transition metal dichalcogenides and diamond-like carbon families of coatings. Solid lubricants are applied either as surface coatings or as fillers in self-lubricating composites. Tribological (friction and wear) contacts with solid lubricant coatings typically result in transfer of a thin layer of material from the surface of the coating to the counterface, commonly known as a transfer film or tribofilm. The wear surfaces can exhibit different chemistry, microstructure, and crystallographic texture from those of the bulk coating due to surface chemical reactions with the surrounding environment. As a result, solid lubricant coatings that give extremely low friction and long wear life in one environment can fail to do so in a different environment. Most solid lubricants exhibit non-Amontonian friction behavior with friction coefficients decreasing with increasing contact stress. The main mechanism responsible for low friction is typically governed by interfacial sliding between the worn coating and the transfer film. Strategies are discussed for the design of novel coating architectures to adapt to varying environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tabor D (1981) J Lubr Tech 103:169

    CAS  Google Scholar 

  2. Rabinowicz E (1995) Friction and wear of materials, 3rd edn. Wiley, New York, p 34

    Google Scholar 

  3. Rabinowicz E (1971) ASLE Trans 14:198

    Article  CAS  Google Scholar 

  4. Gao GT, Mikulski PT, Harrison JA (2002) J Am Chem Soc 124:7202

    Article  CAS  Google Scholar 

  5. Heo S-J, Sinnott SB, Brenner DW, Harrison JA (2005) In: Bhushan B (ed) Nanotribology and nanomechanics: an introduction. Springer, Heidelberg, p 623

    Chapter  Google Scholar 

  6. Szlufarska I, Chandross M, Carpick RW (2008) J Phys D Appl Phys 41:123001

    Article  Google Scholar 

  7. Pastewka L, Moser S, Moseler M (2010) Tribol Lett 39:49

    Article  CAS  Google Scholar 

  8. Liang T, Sawyer WG, Perry SS, Sinnott SB, Phillpot SR (2008) Phys Rev B 77:104105

    Article  Google Scholar 

  9. Liang T, Phillpot SR, Sinnott SB (2009) Phys Rev B 79:245110

    Article  Google Scholar 

  10. Jang I, Burris DL, Dickrell PL, Barry PR, Santos C, Perry SS, Phillpot SR, Sinnott SB, Sawyer WG (2007) J Appl Phys 102:123509

    Article  Google Scholar 

  11. Barry PR, Chiu PY, Perry SS, Sawyer WG, Phillpot SR, Sinnott SB (2011) Langmuir 27:9910

    Article  CAS  Google Scholar 

  12. Prasad SV, Michael JR, Christenson TR (2003) Scripta Mater 48:255

    Article  CAS  Google Scholar 

  13. Jungk JM, Michael JR, Prasad SV (2008) Acta Mater 56:1956

    Article  CAS  Google Scholar 

  14. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Larsen-Basse J (1992) ASM handbook, vol 18: friction, lubrication, and wear technology, p. 30

  16. Greenwood JA, Williamson JBP (1966) Proc R Soc (Lond) A 295:300

    Article  CAS  Google Scholar 

  17. Whitehouse DJ, Archard JF (1970) Proc R Soc (Lond) A316:97

    Article  Google Scholar 

  18. Bower AF, Johnson KL (1989) J Mech Phys Solids 34:471

    Article  Google Scholar 

  19. Bowden FP, Tabor D (1986) The friction and lubrication of solids. Clarendon Press, Oxford, pp 112–120

    Google Scholar 

  20. Stoyanov P, Chromik RR, Goldbaum D, Lince JR, Zhang X (2010) Tribol Lett 40:199

    Article  CAS  Google Scholar 

  21. Stoyanov P, Strauss HW, Chromik RR (2012) Wear 274–275:149

    Article  Google Scholar 

  22. Chromik RR, Wahl KJ (2005) World Tribology Congress III. American Society of Mechanical Engineers, New York, pp 829–830

    Book  Google Scholar 

  23. Singer IL, Dvorak SD, Wahl KJ, Scharf TW (2003) J Vac Sci Technol A 21:S232

    Article  CAS  Google Scholar 

  24. Wahl KJ, Sawyer WG (2008) MRS Bull 33:1159

    Article  CAS  Google Scholar 

  25. Strauss HW, Chromik RR, Hassani S, Klemberg-Sapieha JE (2011) Wear 272:133

    Article  CAS  Google Scholar 

  26. Schmellenmeier H (1953) Exp Tech Phys 1:49

    Google Scholar 

  27. Eisenberg S, Chabot R (1971) J Appl Phys 42:2953

    Article  Google Scholar 

  28. Braithwaite ER (1964) Solid lubricants and surfaces. Clarendon Press, Oxford, p 139

    Google Scholar 

  29. Deacon RF, Goodman JF (1958) Proc R Soc Lond A 243:464

    Article  Google Scholar 

  30. Roselman IC, Tabor D (1976) J Phys D 9:2517

    Article  CAS  Google Scholar 

  31. Buckley DH (1981) Surface effects in adhesion, friction, wear and lubrication. Elsevier, Amsterdam

    Google Scholar 

  32. Skinner J, Gane N, Tabor D (1971) Nature 232:195

    CAS  Google Scholar 

  33. Savage RH (1948) J Appl Phys 19:1

    Article  CAS  Google Scholar 

  34. Ramadanoff D, Glass SW (1944) Trans Am Inst Electr Eng 63:825

    Article  Google Scholar 

  35. Yen BK, Schwickert BE, Toney MF (2004) Appl Phys Lett 84:4702

    Article  CAS  Google Scholar 

  36. Robertson J (1986) Adv Phys 35:317

    Article  CAS  Google Scholar 

  37. Tallant DR, Parmeter JE, Siegal MP, Simpson RL (1995) Diam Relat Mater 4:191

    Article  CAS  Google Scholar 

  38. Erdemir A, Donnet C (eds) (2008) Tribology of diamond-like carbon films: fundamentals and applications. Springer, New York

    Google Scholar 

  39. Robertson J (2002) Mater Sci Eng R 37:129

    Article  Google Scholar 

  40. Erdemir A, Donnet C (2006) J Phys D Appl Phys 39:R311

    Article  CAS  Google Scholar 

  41. Koidl P, Wagner C, Dischler B, Wagner J, Ramsteiner M (1990) Mater Sci Forum 52:41

    Article  Google Scholar 

  42. Tamor MA, Vassell WC, Carduner KR (1991) App Phys Lett 58:592

    Article  CAS  Google Scholar 

  43. Donnet C, Fontaine J, Lefevre F, Grill A, Patel V, Jahnes C (1999) J App Phys 85:3264

    Article  CAS  Google Scholar 

  44. Weiler M, Sattel S, Giessen T, Jung K, Ehrhardt H, Veerasamy VS, Robertson J (1996) Phys Rev B 53:1594

    Article  CAS  Google Scholar 

  45. Erdemir A, Eryilmaz OL, Fenske G (2000) J Vac Sci Tech A 18:1987

    Article  CAS  Google Scholar 

  46. Erdemir A (2002) Proc Inst Mech Eng J 216:387

    CAS  Google Scholar 

  47. Scharf TW, Ohlhausen JA, Tallant DR, Prasad SV (2007) J Appl Phys 101:0635211

    Article  Google Scholar 

  48. Grill A (1993) Wear 168:143

    Article  CAS  Google Scholar 

  49. Donnet C (1998) Surf Coat Technol 100–101:180

    Article  Google Scholar 

  50. Scharf TW, Singer IL (2003) Tribol Lett 14:137

    Article  CAS  Google Scholar 

  51. Kester DJ, Brodbeck CL, Singer IL, Kyriakopoulos A (1999) Surf Coat Technol 113:268

    Article  CAS  Google Scholar 

  52. Scharf TW, Singer IL (2002) Tribol Trans 45:363

    Article  CAS  Google Scholar 

  53. Prasad SV, Dugger MT, Christenson TR, Tallant DR (2004) J Manuf Process 6:107

    Article  Google Scholar 

  54. Scharf TW, Singer IL (2009) Tribol Lett 36:43

    Article  CAS  Google Scholar 

  55. Sánchez-López JC, Erdemir A, Donnet C, Rojas TC (2003) Surf Coat Technol 163–164:444

    Article  Google Scholar 

  56. Chromik RR, Strauss HW, Scharf TW (2012) J Manag 64:35

    CAS  Google Scholar 

  57. Fontaine J, Le Mogne T, Loubet JL, Belin M (2005) Thin Solid Films 482:99

    Article  CAS  Google Scholar 

  58. Fontaine J, Belin M, Le Mogne T, Grill A (2004) Tribol Int 37:869

    Article  CAS  Google Scholar 

  59. Erdemir A, Fontaine J, Donnet C (2008) In: Donnet C, Erdemir A (eds) Tribology of diamond-like carbon films: fundamentals and applications. Springer, New York, p 237

    Chapter  Google Scholar 

  60. Erdemir A, Halter M, Fenske GR, Zuiker C, Csencsits R, Krauss AR, Gruen DM (1997) Trib Trans 40:667

    Article  CAS  Google Scholar 

  61. Erdemir A, Fenske GR, Krauss AR, Gruen DM, McCauley T, Csencsits RT (1999) Surf Coat Technol 121:565

    Article  Google Scholar 

  62. Konicek AR, Grierson DS, Gilbert PUPA, Sawyer WG, Sumant AV, Carpick RW (2008) Phys Rev Lett 100:235502–235505

    Article  CAS  Google Scholar 

  63. Grierson DS, Sumant AV, Konicek AR, Abrecht M, Birrell J, Auciello O, Carlisle JA, Scharf TW, Dugger MT, Gilbert PUPA, Carpick RW (2007) J Vac Sci Tech B 25:1700

    Article  CAS  Google Scholar 

  64. Prasad SV, Zabinski JS (1997) Nature 387:761

    Article  CAS  Google Scholar 

  65. Singer IL (1992) In: Singer IL, Pollock HM (eds) Fundamentals of friction: macroscopic and microscopic processes. Kluwer, Dordrecht, p 237

    Chapter  Google Scholar 

  66. Brainard WA (1969) NASA TN D5141

  67. Sliney HE (1982) Tribol Int 15:303

    Article  CAS  Google Scholar 

  68. Prasad SV, Zabinski JS (1993) J Mater Sci Lett 12:1413

    Article  CAS  Google Scholar 

  69. Prasad SV, Zabinski JS, McDevitt NT (1995) Tribol Trans 38:57

    Article  CAS  Google Scholar 

  70. Zabinski JS, Donley MS, Prasad SV, McDevitt NK (1994) J Mater Sci 29:4834. doi:10.1007/BF00356530

    Article  CAS  Google Scholar 

  71. Muratore C, Bultman JE, Aouadi SM, Voevodin AA (2011) Wear 270:140

    Article  CAS  Google Scholar 

  72. Wahl KJ, Dunn DN, Singer IL (1999) Wear 230:175

    Article  CAS  Google Scholar 

  73. Scharf TW, Kotula PG, Prasad SV (2010) Acta Mater 58:4100

    Article  CAS  Google Scholar 

  74. Hu JJ, Wheeler R, Zabinski JS, Shade PA, Shiveley A, Voevodin AA (2008) Tribol Lett 32:49

    Article  CAS  Google Scholar 

  75. Muratore C, Voevodin AA (2009) Ann Rev Mater Res 39:297

    Article  CAS  Google Scholar 

  76. Hilton R, Fleischauer PD (1992) Surf Coat Technol 54–55:435

    Article  Google Scholar 

  77. Zabinski JS, Donley MS, Walck SD, Schneider TR, McDevitt NT (1995) Tribol Trans 38:894

    Article  CAS  Google Scholar 

  78. Teer DG (2001) Wear 251:1068

    Article  Google Scholar 

  79. Fox VC, Renevier N, Teer DG, Hampshire J, Rigato V (1999) Surf Coat Technol 116–119:492

    Article  Google Scholar 

  80. Scharf TW, Prasad SV, Dugger MT, Kotula PG, Goeke RS, Grubbs RK (2006) Acta Mater 54:4731

    Article  CAS  Google Scholar 

  81. Scharf TW, Diercks DR, Gorman BP, Prasad SV, Dugger MT (2009) Tribol Trans 52:284

    Article  CAS  Google Scholar 

  82. Briscoe BJ, Tabor D (1975) Wear 34:29

    Article  CAS  Google Scholar 

  83. Bahadur S, Tabor D (1984) Wear 98:1

    Article  CAS  Google Scholar 

  84. Burris DL, Boesl B, Bourne GR, Sawyer WG (2007) Macro Mater Eng 292:387

    Article  CAS  Google Scholar 

  85. Dellacorte C, Sliney HE (1992) Lubric Eng 48:877

    CAS  Google Scholar 

  86. Dellacorte C, Edmonds BJ, Benoy PA (2001) NASA TM-210944

  87. Prasad SV, Zabinski JS (1997) Wear 203:498

    Article  Google Scholar 

  88. Prasad SV, Walck SD, Zabinski JS (2000) Thin Solid Films 360:107

    Article  CAS  Google Scholar 

  89. Zabinski JS, Sanders JH, Nainaparampil J, Prasad SV (2000) Tribol Lett 8:103

    Article  CAS  Google Scholar 

  90. Goto M, Kasahara A, Tosa M (2011) Tribol Lett 43:155

    Article  CAS  Google Scholar 

  91. Mohseni H, Scharf TW (2012) J Vac Sci Technol A 30:01A149-1

    Article  Google Scholar 

  92. Rebholz C, Ziegele H, Leyland A, Matthews A (1998) J Vac Sci Technol A 16:2851

    Article  CAS  Google Scholar 

  93. Saito T, Honda F (2000) Wear 237:253

    Article  CAS  Google Scholar 

  94. Koskilinna JO, Linnolahti M, Pakkanen TA (2006) Tribol Lett 24:37

    Article  CAS  Google Scholar 

  95. Erdemir A, Fenske GR, Erck RA (1990) Surf Coat Technol 44:588

    Article  Google Scholar 

  96. Erdemir A, Erck RA, Robles J (1991) Surf Coat Technol 49:435

    Article  CAS  Google Scholar 

  97. Dvorak SD, Wahl KJ, Singer IL (2002) Tribol Trans 45:354

    Article  CAS  Google Scholar 

  98. Lovell M, Deshmukh P, Sawyer WG, Mobley A (2006) Wear 260:1295

    Article  Google Scholar 

  99. Doll GL, Mensah BA, Mohseni H, Scharf TW (2010) J Therm Spray Technol 19:510

    Article  CAS  Google Scholar 

  100. Prasad SV, Scharf TW, Kotula PG, Michael JR, Christenson TR (2009) J Microelectromech Syst 18:695

    Article  CAS  Google Scholar 

  101. Erdemir A, In Bhushan B (eds) (2001) Handbook of modern tribology. CRC Press, Boca Raton, FL, p 787

    Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors thank Joe Michael, Michael Rye, Paul Kotula, Dick Grant, and Bonnie McKenzie for their assistance in electron microscopy, and Jill Glass and Robert Grubbs for their critical reviews. TWS would also like to acknowledge partial support of this work from The National Science Foundation (Grant Numbers: CMMI-0700828 and CMMI-1100648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Prasad.

Additional information

T. W. Scharf—On sabbatical from the Department of Materials Science and Engineering, The University of North Texas, Denton, TX 76203-5310 USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharf, T.W., Prasad, S.V. Solid lubricants: a review. J Mater Sci 48, 511–531 (2013). https://doi.org/10.1007/s10853-012-7038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7038-2

Keywords

Navigation