Skip to main content
Log in

Influence of Surface Roughness on the Lubrication Effect of Carbon Nanoparticle-Coated Steel Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In the present study, a systematic evaluation of the influence of the surface roughness on the lubrication activity of multi-wall carbon nanotubes (MWCNT) and onion-like carbon (OLC) is performed. MWCNT and OLC are chosen as they both present an sp2-hybridization of carbon atoms, show a similar layered atomic structure, and exhibit the potential to roll on top of a surface. However, their morphology (size and aspect ratio) clearly differs, allowing for a methodical study of these differences on the lubrication effect on systematically varied surface roughness. Stainless steel platelets with different surface finishing were produced and coated by electrophoretic deposition with OLC or MWCNT. The frictional behavior is recorded using a ball-on-disk tribometer, and the resulting wear tracks are analyzed by scanning electron microscopy in order to reveal the acting tribological mechanisms. It is found that the lubrication mechanism of both types of particles is traced back to a mixture between a rolling motion on the surfaces and particle degradation, including the formation of nanocrystalline graphitic layers. This investigation further highlights that choosing the suitable surface finish for a tribological application is crucial for achieving beneficial tribological effects of carbon nanoparticle lubricated surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012). https://doi.org/10.1016/j.triboint.2011.11.022

    Article  Google Scholar 

  2. Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)

    Article  Google Scholar 

  3. Aouadi, S.M., Gao, H., Martine, A., Scharf, T.W., Muratore, C.: Lubricious oxide coatings for extreme temperature applications: a review. Surf. Coat. Technol. 257, 266–277 (2014)

    Article  Google Scholar 

  4. Li, Y., Li, B.X., Zou, W.J.: The relationship between nanocrystalline structure and frictional properties of nanodiamond/Ni composite coatings by brush plating. Appl. Mech. Mater. 80–81, 683–687 (2011). https://doi.org/10.4028/www.scientific.net/AMM.80-81.683

    Article  Google Scholar 

  5. Hirata, A., Yoshioka, N.: Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition. Tribol. Int. 37, 893–898 (2004). https://doi.org/10.1016/j.triboint.2004.07.005

    Article  Google Scholar 

  6. Miyoshi, K., Street Jr., K.W., Vander Wal, R.L., Andrews, R., Sayir, A.: Solid lubrication by multiwalled carbon nanotubes in air and in vacuum. Tribol. Lett. 19, 191–201 (2005). https://doi.org/10.1007/s11249-005-6146-4

    Article  Google Scholar 

  7. Reinert, L., Suárez, S., Rosenkranz, A.: Tribo-mechanisms of carbon nanotubes: friction and wear behavior of CNT-reinforced nickel matrix composites and CNT-coated bulk nickel. Lubricants 4, 11 (2016). https://doi.org/10.3390/lubricants4020011

    Article  Google Scholar 

  8. Gogotsi, Y., Presser, V.: Carbon Nanomaterials. CRC Press, Boca Raton (2014). ISBN 9781138076815

    Google Scholar 

  9. Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55, 41–64 (2010). https://doi.org/10.1179/095066009X12572530170543

    Article  Google Scholar 

  10. Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012). https://doi.org/10.1038/nnano.2011.209

    Article  Google Scholar 

  11. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  12. Cebik, J., McDonough, J.K., Peerally, F., Medrano, R., Neitzel, I., Gogotsi, Y., Osswald, S.: Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology 24, 1–10 (2013). https://doi.org/10.1088/0957-4484/24/20/205703

    Article  Google Scholar 

  13. Zeiger, M., Jäckel, N., Aslan, M., Weingarth, D., Presser, V.: Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon 84, 584–598 (2015). https://doi.org/10.1016/j.carbon.2014.12.050

    Article  Google Scholar 

  14. Reinert, L., Lasserre, F., Gachot, C., Grützmacher, P., MacLucas, T., Souza, N., Mücklich, F., Suarez, S.: Long-lasting solid lubrication by CNT-coated patterned surfaces. Sci. Rep. (2017). https://doi.org/10.1038/srep42873

    Google Scholar 

  15. Hu, J.J., Jo, S.H., Ren, Z.F., Voevodin, A., Zabinski, J.S.: Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel. Tribol. Lett. 19, 119–125 (2005). https://doi.org/10.1007/s11249-005-5091-6

    Article  Google Scholar 

  16. Tunable friction behavior of oriented carbon nanotube films: Dickrell, P.L., Pal, S.K., Bourne, G.R., Muratore, C., Voevodin, a. a., Ajayan, P.M., Schadler, L.S., Sawyer, W.G. Tribol. Lett. 24, 85–90 (2006). https://doi.org/10.1007/s11249-006-9162-0

    Article  Google Scholar 

  17. Zhang, X., Luster, B., Church, A., Muratore, C., Voevodin, A.A., Kohli, P., Aouadi, S., Talapatra, S.: Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces 1, 735–739 (2009). https://doi.org/10.1021/am800240e

    Article  Google Scholar 

  18. Arai, S., Fujimori, A., Murai, M., Endo, M.: Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater. Lett. 62, 3545–3548 (2008). https://doi.org/10.1016/j.matlet.2008.03.047

    Article  Google Scholar 

  19. Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D., Zhang, X.B.: T ribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41, 215–222 (2003)

    Article  Google Scholar 

  20. Kim, K.T., Cha, S.I., Hong, S.H.: Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A 449–451, 46–50 (2007). https://doi.org/10.1016/j.msea.2006.02.310

    Article  Google Scholar 

  21. Scharf, T.W., Neira, A., Hwang, J.Y., Tiley, J., Banerjee, R.: Self-lubricating carbon nanotube reinforced nickel matrix composites. J. Appl. Phys. 106, 013508 (2009). https://doi.org/10.1063/1.3158360

    Article  Google Scholar 

  22. Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005). https://doi.org/10.1016/j.carbon.2005.01.044

    Article  Google Scholar 

  23. Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25, 247–253 (2006). https://doi.org/10.1007/s11249-006-9176-7

    Article  Google Scholar 

  24. Lu, H.F., Fei, B., Xin, J.H., Wang, R.H., Li, L., Guan, W.C.: Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion. Carbon 45, 936–942 (2007). https://doi.org/10.1016/j.carbon.2007.01.001

    Article  Google Scholar 

  25. Dickrell, P.L., Sinnott, S.B., Hahn, D.W., Raravikar, N.R., Schadler, L.S., Ajayan, P.M., Sawyer, W.G.: Frictional anisotropy of oriented carbon nanotube surfaces. Tribol. Lett. 18, 59–62 (2005). https://doi.org/10.1007/s11249-004-1752-0

    Article  Google Scholar 

  26. Ni, B., Sinnott, S.B.: Tribological properties of carbon nanotube bundles predicted from atomistic simulations. Surf. Sci. 487, 87–96 (2001). https://doi.org/10.1016/S0039-6028(01)01073-1

    Article  Google Scholar 

  27. Martin, J.M., Ohmae, N.: Nanolubricants. Wiley, New York (2008). ISBN 978-0-470-06552-5

    Book  Google Scholar 

  28. Hirata, A., Igarashi, M., Kaito, T.: Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles. Tribol. Int. 37, 899–905 (2004). https://doi.org/10.1016/j.triboint.2004.07.006

    Article  Google Scholar 

  29. Park, S., Srivastava, D., Cho, K.: Generalized chemical reactivity of curved surfaces: carbon nanotubes. Nano Lett. 3, 1273–1277 (2003). https://doi.org/10.1021/nl0342747

    Article  Google Scholar 

  30. Street, K.W., Marchetti, M., Vander Wal, R.L., Tomasek, A.J.: Evaluation of the tribological behavior of nano-onions in Krytox 143AB. Tribol. Lett. 16, 143–149 (2004)

    Article  Google Scholar 

  31. Bucholz, E.W., Phillpot, S.R., Sinnott, S.B.: Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Comput. Mater. Sci. 54, 91–96 (2012). https://doi.org/10.1016/j.commatsci.2011.09.036

    Article  Google Scholar 

  32. Menezes, P.L., Kishore, Kailas, S.V.: Effect of surface roughness parameters and surface texture on friction and transfer layer formation in tin–steel tribo-system. J. Mater. Process. Technol. 208, 372–382 (2008). https://doi.org/10.1016/j.jmatprotec.2008.01.003

    Article  Google Scholar 

  33. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. (2005). https://doi.org/10.1088/0953-8984/17/1/r01

    Google Scholar 

  34. Sahin, M., Çetinarslan, C.S., Akata, H.E.: Effect of surface roughness on friction coefficients during upsetting processes for different materials. Mater. Des. 28, 633–640 (2007). https://doi.org/10.1016/j.matdes.2005.07.019

    Article  Google Scholar 

  35. Svahn, F., Kassman-Rudolphi, Å., Wallén, E.: The influence of surface roughness on friction and wear of machine element coatings. Wear 254, 1092–1098 (2003). https://doi.org/10.1016/S0043-1648(03)00341-7

    Article  Google Scholar 

  36. Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17, 477–517 (2003). https://doi.org/10.1163/15685610360554384

    Article  Google Scholar 

  37. Bowden, F.P., Tabor, D.: Mechanism of metallic friction. Nature 3798, 197–199 (1942). https://doi.org/10.1038/150197a0

    Article  Google Scholar 

  38. Czichos, H., Habig, K.: Tribologie-Handbuch. Vieweg + Teubner, Wiesbaden (2010). ISBN 978-3-8348-0017-6

    Book  Google Scholar 

  39. Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2646 (1991)

    Article  Google Scholar 

  40. Dienwiebel, M., Verhoeven, G., Pradeep, N., Frenken, J., Heimberg, J., Zandbergen, H.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004). https://doi.org/10.1103/PhysRevLett.92.126101

    Article  Google Scholar 

  41. Tomlinson, G.A.: A molecular theory of friction. Lond. Edinb. Dublin Philos. Mag. J. Sci. 7, 905–939 (1929). https://doi.org/10.1080/14786440608564819

    Article  Google Scholar 

  42. Weiss, M., Elmer, F.: Dry friction in the Frenkel–Kontorova–Tomlinson model: static properties. Phys. Rev. B Condens. Matter 53, 7539–7549 (1996)

    Article  Google Scholar 

  43. Etsion, I.: State of the art in laser surface texturing. J. Tribol. Trans. ASME 127, 248 (2005). https://doi.org/10.1115/1.1828070

    Article  Google Scholar 

  44. Rapoport, L., Moshkovich, A., Perfilyev, V., Gedanken, A., Koltypin, Y., Sominski, E., Halperin, G., Etsion, I.: Wear life and adhesion of solid lubricant films on laser-textured steel surfaces. Wear 267, 1203–1207 (2009). https://doi.org/10.1016/j.wear.2009.01.053

    Article  Google Scholar 

  45. Gachot, C., Rosenkranz, A., Reinert, L., Ramos-Moore, E., Souza, N., Müser, M.H., Mücklich, F.: Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry. Tribol. Lett. 9, 193–202 (2013). https://doi.org/10.1007/s11249-012-0057-y

    Article  Google Scholar 

  46. Rosenkranz, A., Reinert, L., Gachot, C., Mücklich, F.: Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions. Wear 318, 49–61 (2014). https://doi.org/10.1016/j.wear.2014.06.016

    Article  Google Scholar 

  47. Sondhauß, J., Fuchs, H., Schirmeisen, A.: Frictional properties of a mesoscopic contact with engineered surface roughness. Tribol. Lett. 42, 319–324 (2011)

    Article  Google Scholar 

  48. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006). https://doi.org/10.1016/j.surfrep.2006.04.001

    Article  Google Scholar 

  49. Greenwood, J., Williamson, J.: Contact of nominally flat surfaces. R. Soc. Publ. 295, 300–319 (1966)

    Google Scholar 

  50. Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 39, 906–914 (2006). https://doi.org/10.1016/j.triboint.2005.09.001

    Article  Google Scholar 

  51. Akbulut, M.: Nanoparticle-based lubrication systems. J. Powder Metall. Min. 1, 377–411 (2012). https://doi.org/10.1002/9781118483961.ch17

    Article  Google Scholar 

  52. Wu, Y.Y., Tsui, W.C., Liu, T.C.: Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262, 819–825 (2007). https://doi.org/10.1016/j.wear.2006.08.021

    Article  Google Scholar 

  53. Ivanov, M.G., Ivanov, D.M., Pavlyshko, S.V., Petrov, I., Vargas, A., McGuire, G., Shenderova, O.: Nanodiamond-based nanolubricants. Fuller. Nanotub. Carbon Nanostruct. 20, 606–610 (2012). https://doi.org/10.1080/1536383x.2012.657010

    Article  Google Scholar 

  54. Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69–80 (2008). https://doi.org/10.1007/s11249-008-9316-3

    Article  Google Scholar 

  55. Khalilpourazary, S., Meshkat, S.S.: Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process. Int. J. Adv. Manuf. Technol. 71, 1599–1610 (2014). https://doi.org/10.1007/s00170-013-5591-8

    Article  Google Scholar 

  56. Rahmati, B., Sarhan, A.A.D., Sayuti, M.: Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int. J. Adv. Manuf. Technol. 70, 1143–1155 (2014). https://doi.org/10.1007/s00170-013-5334-x

    Article  Google Scholar 

  57. Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., Lee, J., Kim, S.H.: Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J. Mech. Sci. Technol. 25, 2853–2857 (2011). https://doi.org/10.1007/s12206-011-0724-1

    Article  Google Scholar 

  58. Kogovšek, J., Remškar, M., Mrzel, A., Kalin, M.: Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes. Tribol. Int. 61, 40–47 (2013). https://doi.org/10.1016/j.triboint.2012.12.003

    Article  Google Scholar 

  59. Tevet, O., Von-Huth, P., Popovitz-Biro, R., Rosentsveig, R., Wagner, H.D., Tenne, R.: Friction mechanism of individual multilayered nanoparticles. Proc. Natl. Acad. Sci. 108, 19901–19906 (2011). https://doi.org/10.1073/pnas.1106553108

    Article  Google Scholar 

  60. Majumder, M., Rendall, C., Li, M., Behabtu, N., Eukel, J.A., Hauge, R.H., Schmidt, H.K., Pasquali, M.: Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 65, 2000–2008 (2010). https://doi.org/10.1016/j.ces.2009.11.042

    Article  Google Scholar 

  61. Mirri, F., Ma, A.W.K., Hsu, T.T., Behabtu, N., Eichmann, S.L., Young, C.C., Tsentalovich, D.E., Pasquali, M.: High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6, 9737–9744 (2012)

    Article  Google Scholar 

  62. De Nicola, F., Castrucci, P., Scarselli, M., Nanni, F., Cacciotti, I., De Crescenzi, M.: Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel. Nanotechnology 26, 145701 (2015). https://doi.org/10.1088/0957-4484/26/14/145701

    Article  Google Scholar 

  63. Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Jane Minay, E., Shaffer, M.S.P.: Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006). https://doi.org/10.1016/j.carbon.2006.06.021

    Article  Google Scholar 

  64. Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52, 1–61 (2007). https://doi.org/10.1016/j.pmatsci.2006.07.001

    Article  Google Scholar 

  65. Reinert, L., Zeiger, M., Suarez, S., Presser, V., Mücklich, F.: Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv. 5, 95149–95159 (2015). https://doi.org/10.1039/C5RA14310A

    Article  Google Scholar 

  66. De Riccardis, M.F., Carbone, D., Rizzo, A.: A novel method for preparing and characterizing alcoholic EPD suspensions. J. Colloid Interface Sci. 307, 109–115 (2007). https://doi.org/10.1016/j.jcis.2006.10.037

    Article  Google Scholar 

  67. Yen, B.K., Ishihara, T.: Effect of humidity on friction and wear of Al–Si eutectic alloy and Al–Si alloy-graphite composites. Wear 198, 169–175 (1996)

    Article  Google Scholar 

  68. Savage, R.H.: Graphite lubrication. J. Appl. Phys. 19, 1 (1948). https://doi.org/10.1063/1.1697867

    Article  Google Scholar 

  69. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  Google Scholar 

  70. Blau, P.J.: On the nature of running-in. Tribol. Int. 38, 1007–1012 (2005). https://doi.org/10.1016/j.triboint.2005.07.020

    Article  Google Scholar 

  71. Dogan, H., Findik, F., Morgul, O.: Friction and wear behaviour of implanted AISI 316L SS and comparison with a substrate. Mater. Des. 23, 605–610 (2002). https://doi.org/10.1016/S0261-3069(02)00066-3

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by funding from the Deutsche Forschungsgemeinschaft (DFG, project: MU 959/38-1 and SU 911/1-1). L. R., S.S., and F. M. wish to acknowledge the EFRE Funds of the European Commission for support of activities within the AMELab project. This work was supported by the CREATe-Network Project, Horizon 2020 of the European Commission (RISE Project No. 644013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reinert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinert, L., Schütz, S., Suárez, S. et al. Influence of Surface Roughness on the Lubrication Effect of Carbon Nanoparticle-Coated Steel Surfaces. Tribol Lett 66, 45 (2018). https://doi.org/10.1007/s11249-018-1001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1001-6

Keywords

Navigation