Skip to main content
Log in

Frictional anisotropy of oriented carbon nanotube surfaces

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This report examines highly anisotropic tribological behavior of multi-walled nanotube films oriented in mutually orthogonal directions. The average values of coefficient of friction varied from extremely high values (μ=0.795) for vertically aligned nanotubes grown on rigid substrates to very low values (μ=0.090) for nanotubes dispersed flat on the same substrates. The results were insensitive to humidity, in contrast to graphite materials, and indicate that nanotubes could be utilized as both low and high frictional surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Tersoff R.S. Ruoff (1994) Phys Rev. Lett. 73 676 Occurrence Handle10.1103/PhysRevLett.73.676

    Article  Google Scholar 

  • Y.J. Liu X.L. Chen (2003) Mech. Mater. 35 69 Occurrence Handle10.1016/S0167-6636(02)00200-4

    Article  Google Scholar 

  • C. Goze L. Vaccarini L. Henrard P. Bernier E. Hernandez A. Rubio (1999) Synth. Metals 103 2500 Occurrence Handle10.1016/S0379-6779(98)01071-6

    Article  Google Scholar 

  • J.P. Salvetat J.M. Bonard N.H. Thomson A.J. Kulik L. Forro W. Benoit L. Zuppiroli (1999) Appl. Phys. Mater. Sci. Proces. 69 255 Occurrence Handle10.1007/s003390050999

    Article  Google Scholar 

  • C.Y. Li T.W. Chou (2003) Int. J. Solids Struct. 40 2487 Occurrence Handle10.1016/S0020-7683(03)00056-8

    Article  Google Scholar 

  • B.G. Demczyk Y.M. Wang J. Cumings M. Hetman W. Han A. Zettl R.O. Ritchie (2002) Mater. Sci. Eng. Struct. Mater. Properties Microstruct. Process. 334 173

    Google Scholar 

  • B.Q. Wei R. Vajtai P.M. Ajayan (2003) Carbon 41 185 Occurrence Handle10.1016/S0008-6223(02)00307-X

    Article  Google Scholar 

  • H. Cai F. Yan Q. Xue (2004) Mater. Sci. Eng. Struct. Mater. Properties Microstruct. Process. 364 94

    Google Scholar 

  • W.X. Chen F. Li G. Han J.B. Xia L.Y. Wang J.P. Tu Z.D. Xu (2003) Tribol. Lett. 15 275 Occurrence Handle10.1023/A:1024869305259

    Article  Google Scholar 

  • E. Flahaut A. Peigney C. Laurent C. Marliere F. Chastel A. Rousset (2000) Acta Mater. 48 3803 Occurrence Handle10.1016/S1359-6454(00)00147-6

    Article  Google Scholar 

  • G.D. Zhan J.D. Kuntz J.L. Wan A.K. Mukherjee (2003) Nat. Mater. 2 38 Occurrence Handle10.1038/nmat793

    Article  Google Scholar 

  • R.W. Siegel S.K. Chang B.J. Ash J. Stone P.M. Ajayan R.W. Doremus L.S. Schadler (2001) Scripta Mater. 44 2061 Occurrence Handle10.1016/S1359-6462(01)00892-2

    Article  Google Scholar 

  • J.P. Tu Y.Z. Yang L.Y. Wang X.C. Ma X.B. Zhang (2001) Tribol. Lett. 10 225 Occurrence Handle10.1023/A:1016662114589

    Article  Google Scholar 

  • W.X. Chen J.P. Tu L.Y. Wang H.Y. Gan Z.D. Xu X.B. Zhang (2003) Carbon 41 215 Occurrence Handle10.1016/S0008-6223(02)00265-8

    Article  Google Scholar 

  • W.X. Chen J.P. Tu Z.D. Xu W.L. Chen X.B. Zhang D.H. Cheng (2003) Mater. Lett. 57 1256 Occurrence Handle10.1016/S0167-577X(02)00968-0

    Article  Google Scholar 

  • J.P. Tu L.P. Zhu K. Hou S.Y. Guo (2003) Carbon 41 1257 Occurrence Handle10.1016/S0008-6223(03)00047-2

    Article  Google Scholar 

  • M.R. Falvo R.M. Taylor A. Helser V. Chi F.P. Brooks S. Washburn R. Superfine (1999) Nature 397 236 Occurrence Handle10.1038/16662

    Article  Google Scholar 

  • M.R. Falvo J. Steele R.M. Taylor R Superfine (2000) Tribol. Lett. 9 73 Occurrence Handle10.1023/A:1018808511550

    Article  Google Scholar 

  • A. Buldum J.P. Lu (1999) Phys. Rev. Lett. 83 5050 Occurrence Handle10.1103/PhysRevLett.83.5050

    Article  Google Scholar 

  • A. Buldum J.P. Lu (2003) Appl. Surf. Sci. 219 123 Occurrence Handle10.1016/S0169-4332(03)00641-X

    Article  Google Scholar 

  • J. Cumings A. Zettl (2000) Science 289 602 Occurrence Handle10.1126/science.289.5479.602

    Article  Google Scholar 

  • B.Q. Wei R. Vajtai Y. Jung J. Ward R. Zhang G. Ramanath P.M. Ajayan (2003) Chem. Mater. 15 1598 Occurrence Handle10.1021/cm0202815

    Article  Google Scholar 

  • T.V. Reshetenko L.B. Avdeeva Z.R. Ismagilov V.V. Pushkarev S.V. Cherepanova A.L. Chuvilin V.A. Likholobov (2003) Carbon 41 1605 Occurrence Handle10.1016/S0008-6223(03)00115-5

    Article  Google Scholar 

  • F. Tuinstra J.L. Koenig (1970) J. Chem. Phys. 53 1126 Occurrence Handle10.1063/1.1674108

    Article  Google Scholar 

  • A. Jorio M.A. Pimenta A.G. Souza R. Saito G. Dresselhaus M.S. Dresselhaus (2003) New J. Phys. 5 139.1. Occurrence Handle10.1088/1367-2630/5/1/139

    Article  Google Scholar 

  • H.W. Liu B. Bhushan (2003) J. Vacuum Sci. Technol. A 21 1528 Occurrence Handle10.1116/1.1560711

    Article  Google Scholar 

  • B. Ni S.B. Sinnott (2001) Surf. Sci. 487 87 Occurrence Handle10.1016/S0039-6028(01)01073-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickrell, P., Sinnott, S., Hahn, D. et al. Frictional anisotropy of oriented carbon nanotube surfaces. Tribol Lett 18, 59–62 (2005). https://doi.org/10.1007/s11249-004-1752-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-004-1752-0

Keywords

Navigation