Skip to main content
Log in

Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Mungbean, Vigna radiata (L.) Wilczek is an important pulse crop that is widely cultivated in semi- arid tropics. The crop is attacked by various soil-borne pathogens like Rhizoctonia solani, which causes dry rot disease and seriously affects its productivity. Earlier we characterized the non-expressor of pathogenesis related gene-1(BjNPR1) of mustard, Brassica juncea, the counterpart of AtNPR1 of Arabidopsis thaliana. Here, we transformed mungbean with BjNPR1 via Agrobacterium tumefaciens. Because of the recalcitrant nature of mungbean, the effect of some factors like Agrobacterium tumefaciens strains (GV2260 and LBA4404), pH, l-cysteine and tobacco leaf extract was tested in transformation. The transgenic status of 15 plants was confirmed by PCR using primers for nptII. The independent integration of T-DNA in transgenic plants was analyzed by Southern hybridization with an nptII probe and the expression of BjNPR1 was confirmed by RT–PCR. Some of the T0 plants were selected for detached leaf anti-fungal bioassay using the fungus Rhizoctonia solani, which showed moderate to high level of resistance depending on the level of expression of BjNPR1. The seedling bioassay of transgenic T2 plants indicated resistance against dry rot disease caused by R. solani.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abawi GS (1989) Root rot. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics. CIAT, Cali, pp 105–157

    Google Scholar 

  • Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Ann Rev Phytopathol 20:329–347

    Article  Google Scholar 

  • Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Ann Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clark JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Jarret RL, Li Z, Xing A, Demski JW (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:12–14

    Google Scholar 

  • Eapen S (2008) Advances in development of transgenic pulse crops. Biotechnol Adv 26:162–168

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  PubMed  CAS  Google Scholar 

  • Frame B, Shou H, Chikwamba R, Zhang Z, Xiang C, Fonger T, Pegg SE, Li B, Nettleton D, Pei D, Wang K (2002) Agrobacterium-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Guo XM, Stotz HU (2007) Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe Interact 20:1384–1395

    Article  PubMed  CAS  Google Scholar 

  • Hei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  Google Scholar 

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated genetic transformation of mungbean [Vigna radiata (L.) Wilczek]—a recalcitrant grain legume. Plant Sci 161:239–247

    Article  PubMed  CAS  Google Scholar 

  • Jha S, Tank HG, Prasad BD, Chattoo BB (2008) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18:59–69

    Article  PubMed  Google Scholar 

  • Kesanakurti D, Sareddy GR, Prakash Babu P, Kirti PB (2009) Mustard NPR1, a mammalian IκB homologue inhibits NF-κB activation in human GBM cell lines. Biochem Biophys Res Commun 390:427–433

    Article  PubMed  CAS  Google Scholar 

  • Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:567–581

    Article  PubMed  CAS  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in malus × domestica. Mol Plant Microbe Interact 20:1568–1580

    Article  PubMed  CAS  Google Scholar 

  • Mansur EA, Lacorte C, de Freitas VG, de Oliveira DE, Timmerman B, Cordeiro AR (1993) Regulation of transformation efficiency of peanut (Arachis hypogaea L.) explants by Agrobacterium tumefaciens. Plant Sci 89:93–99

    Article  Google Scholar 

  • Meur G, Madhusudhan B, Dutta Gupta A, Prakash S, Kirti PB (2006) Differential induction of NPR1 during defense responses in Brassica juncea. Physiol Mol Plant Pathol 68:128–137

    Article  CAS  Google Scholar 

  • Meur G, Budatha M, Srinivasan T, Kumar KRR, Gupta AD, Kirti PB (2008) Constitutive expression of Arabidopsis NPR1 confers enhanced resistance to the early instars of Spodoptera litura in transgenic tobacco. Physiol Plant 133:765–775

    Article  PubMed  CAS  Google Scholar 

  • Olhoft PM, Somers DA (2001) l-Cysteine increases Agrobacterium mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J, Nielsen NC (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Owen W, Jayaraman J, Punja ZK (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141

    Article  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975

    Article  PubMed  CAS  Google Scholar 

  • Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9:425–439

    Article  PubMed  CAS  Google Scholar 

  • Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859

    PubMed  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Sita Mahalakshmi L, Leela T, Manoj Kumar S, Kiran Kumar B, Naresh B, Devi Prathibha (2006) Enhanced genetic transformation efficiency of mungbean by use of primary leaf explants. Curr Sci 91:93–99

    Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    Article  PubMed  CAS  Google Scholar 

  • Sonia MS, Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean (Vigna radiata). Plant Cell Rep 26:187–198

    Article  PubMed  CAS  Google Scholar 

  • Surekha Ch, Beena MR, Arundhati A, Singh PK, Tuli R, Datta-Gupta A (2005) Agrobacterium- mediated gene transformation of pigeon pea, Cajanus cajan (L.) Millsp. using embryonal segments and development of transgenic plants for resistance to Spodoptera. Plant Sci 169:1074–1080

    Article  CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Khandelwal A, Shaila MS, Larksome Sita G (2000) Agrobacterium-mediated genetic transformation and regeneration of transgenic plant from cotyledon explants of groundnut (Arachis hypogaea L.) via somatic embryogenesis. Curr Sci 78:1130–1136

    CAS  Google Scholar 

  • Vijayan S, Beena MR, Kirti PB (2006) Simple and effective regeneration of mungbean [Vigna radiata (L.) Wilczek] using cotyledonary node explants. J Plant Biochem Biotechnol 15:131–134

    CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the AP-Netherlands Biotechnology Programme administered by the Institute of Public Enterprise, Osmania University Campus, Hyderabad for financial support with which the BjNPR1 gene was characterized. They thank the Head, Department of Plant Sciences for facilities supported by the DST-FIST, UGC-CAS etc. SV is grateful to the University Grants Commission, Government of India for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kirti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayan, S., Kirti, P.B. Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani . Transgenic Res 21, 193–200 (2012). https://doi.org/10.1007/s11248-011-9521-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9521-y

Keywords

Navigation