Skip to main content
Log in

Genetic transformation of the sugar beet plastome

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

It is very important for the application of chloroplast engineering to extend the range of species in which this technology can be achieved. Here, we describe the development of a chloroplast transformation system for the sugar beet (Beta vulgaris L. ssp. vulgaris, Sugar Beet Group) by biolistic bombardment of leaf petioles. Homoplasmic plastid-transformed plants of breeding line Z025 were obtained. Transformation was achieved using a vector that targets genes to the rrn16/rps12 intergenic region of the sugar beet plastome, employing the aadA gene as a selectable marker against spectinomycin and the gfp gene for visual screening of plastid transformants. gfp gene transcription and protein expression were shown in transplastomic plants. Detection of GFP in Comassie blue-stained gels suggested high GFP levels. Microscopy revealed GFP fluorescence within the chloroplasts. Our results demonstrate the feasibility of engineering the sugar beet chloroplast genome; this technology provides new opportunities for the genetic improvement of this crop and for social acceptance of genetically modified sugar beet plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadabadi M, Ruf S, Bock R (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16:437–448

    Article  PubMed  CAS  Google Scholar 

  • Bartsch D, Lehnen M, Clegg J, Pohl-Orf M, Schuphan I, Ellstrand NC (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Mol Ecol 8:1733–1741

    Article  PubMed  Google Scholar 

  • Bartsch D, Cuguen J, Biancardi E, Sweet J (2003) Environmental implications of gene flow from sugar beet to wild beet—current status and future research needs. Environ Biosafety Res 2:1–11

    Google Scholar 

  • Biancardi E, Lewellen RT, De Biaggi M, Erichsen AW, Stevanato P (2002) The origin of rizomania resistance in sugar beet. Euphytica 127:383–397

    Article  CAS  Google Scholar 

  • Bock R (2001) Transgenic chloroplast in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  PubMed  CAS  Google Scholar 

  • Catlin DW (1990) The effect of antibiotics on the inhibition of callus induction and plant regeneration from cotyledons of sugarbeet (Beta vulgaris L.). Plant Cell Rep 9:285–288

    Article  CAS  Google Scholar 

  • Craig W, Lenzi P, Scotti N, De Palma M, Saggese P, Carbone V, McGrath Curran N, Magee AM, Medgyesy P, Kavanagh TA, Dix PJ, Grillo S, Cardi T (2008) Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res. doi: 10.1007/s11248-008-9164-9

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Lee SB, Panchal T, Wiebe PO (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Darmency H, Vigouroux Y, Gestat De Garambé T, Richard-Molard M, Muchembled C (2007) Transgene escape in sugar beet production fields: data from six years farm scale monitoring. Environ Biosafety Res 6:197–206

    Article  PubMed  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  Google Scholar 

  • Dhingra A, Portis AR Jr, Daniell H (2004) Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci USA 101:6315–6320

    Article  PubMed  CAS  Google Scholar 

  • Dovzhenko A, Koop HU (2003) Sugarbeet (Beta vulgaris L.): shoot regeneration from callus and callus protoplasts. Planta 217:374–381

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Frullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  PubMed  CAS  Google Scholar 

  • Golds T, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Nat Biotechnol 11:95–97

    Article  CAS  Google Scholar 

  • Hall RD, Riksen-Bruinsma T, Weyens G, Lefebvre M, Dunwell JM, Krens FA (1996) Stomatal guard cells are totipotent. Plant Physiol 112:889–892

    PubMed  CAS  Google Scholar 

  • Hall RD, Riksen-Bruinsma T, Weyens G, Lefebre M, Dunwell JM, van Tunen A, Krens FA (1997) Sugar beet guard protoplast demonstrate a remarkable capacity for cell division enabling applications in stomatal physiology and molecular breeding. J Exp Bot 48:255–263

    Article  CAS  Google Scholar 

  • Hisano H, Kimoto Y, Hayakawa H, Takeichi J, Domae T, Hashimoto R, Abe J, Asano S, Kanazawa A, Shimamoto Y (2004) High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima. Plant Cell Rep 22:910–918

    Article  PubMed  CAS  Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    Article  PubMed  CAS  Google Scholar 

  • Huang FC, Klaus S, Herz S, Zou Z, Koop HU, Golds T (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    Article  PubMed  CAS  Google Scholar 

  • Ivic-Haymes SD, Smigocki AC (2005) Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves. Plant Cell Rep 23:699–704

    Article  PubMed  CAS  Google Scholar 

  • Jacq B, Tétu T, Sangwan RS, De Laat A, Sangwan-Norreel BS (1992) Plant regeneration from sugarbeet (Beta vulgaris L.) hypocotyls cultured in vitro and flow cytometric nuclear DNA analysis of regenerants. Plant Cell Rep 11:329–333

    Article  Google Scholar 

  • Jeong SW, Jeong WJ, Woo JW, Choi DW, Park YI, Liu JR (2004) Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco. Plant Cell Rep 22:747–751

    Article  PubMed  CAS  Google Scholar 

  • Kishchenko EM, Komarnitskii IK, Kuchuk NV (2005) Production of transgenetic sugarbeet (Beta vulgaris L.) plants resistant to phosphinothricin. Cell Biol Int 29:15–19

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    PubMed  CAS  Google Scholar 

  • Lelivelt CL, McCabe MS, Newell CA, de Snoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  PubMed  CAS  Google Scholar 

  • Liu CW, Lin CC, Chen JJ, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Maliga P (2007) Transformation of the plastid genome to study RNA editing. Methods Enzymol 424:501–518

    Article  PubMed  CAS  Google Scholar 

  • McGrath JM, Saccomani M, Stevanato P, Biancardi E (2007) Beet. In: Kole C (ed) Genome mapping and molecular breeding in plants, volume 5 vegetables. Springer-Verlag, Berlin, pp 135–151

    Google Scholar 

  • Mishutkina IaV, Gaponenko AK (2006) Sugar beet (Beta vulgaris L.) morphogenesis in vitro: effects of phytohormone type and concentration in the culture medium, type of explants, and plant genotype on shoot regeneration frequency. Genetika 42:210–218

    PubMed  Google Scholar 

  • Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplast. Plant Sci 170:35–142

    Article  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646

    Article  PubMed  CAS  Google Scholar 

  • Reichel C, Mathur J, Eckes P, Langenkemper K, Koncz C, Schell J, Reiss B, Maas C (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc Natl Acad Sci USA 93:5888–5893

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger I, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Saeglitz C, Pohl M, Bartsch D (2000) Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants. Mol Ecol 9:2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  PubMed  CAS  Google Scholar 

  • Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122

    Article  PubMed  CAS  Google Scholar 

  • Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18:829–834

    Article  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374–4384

    Article  PubMed  CAS  Google Scholar 

  • Zhang CL, Chen DF, McCormac AC, Scott NW, Elliot MC, Slater A (2001) Use of GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). Molecular Biotechnol 17:109–117

    Article  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This article is contribution no. 130 from the Institute of Plant Genetic, Research Division of Perugia. This work was supported by the European Framework VI Specific Target Research Project “Transcontainer”. We are grateful to Dr. Gunter Diener (KWS SAAT AG) for providing us the monogerm sugar beet seeds and Dr. Marco De Biaggi and Dr. Enrico Biancardi (CRA – CIN Centro di Ricerca per le Colture Industriali Sede di Rovigo) for the other sugar beet breeding lines. We thank Professor Henry Daniell for providing pCR 2.1-5′UTR and pLD-CtV, and Dr. Phil Dix and Dr. Matthew McCabe for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Bellucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Marchis, F., Wang, Y., Stevanato, P. et al. Genetic transformation of the sugar beet plastome. Transgenic Res 18, 17–30 (2009). https://doi.org/10.1007/s11248-008-9193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-008-9193-4

Keywords

Navigation