Skip to main content
Log in

A leaf-based regeneration and transformation system for maize (Zea mays L.)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Efficient methods for in vitro propagation, regeneration, and transformation of plants are of pivotal importance to both basic and applied research. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. We have developed a novel tissue culture and plant regeneration system that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse facilities. We report here: (i) a protocol for the efficient induction of regeneration-competent callus from maize leaves in the dark, (ii) a protocol for inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus for the generation of stably transformed maize plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal PK, Kohli A, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260

    Article  CAS  Google Scholar 

  • Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Armstrong CL (1999) The first decade of maize transformation: a review and future perspectives. Maydica 44:101–109

    Google Scholar 

  • Bilang R, Fütterer J, Sautter C (1999) Transformation of cereals. Genet Eng 21:113–157

    CAS  Google Scholar 

  • Bock R (2001) Transgenic chloroplasts in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318

    Article  PubMed  CAS  Google Scholar 

  • Breitler JC, Labeyrie A, Meynard D, Legavre T, Guiderdoni E (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719

    Article  PubMed  CAS  Google Scholar 

  • Chu C-C, Wang C-C, Sun C-S, Hsu C, Yin K-C, Chu C-Y, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Conger BV, Novak FJ, Afza R, Erdelsky K (1987) Somatic embryogenesis from cultured leaf segments of Zea mays. Plant Cell Rep 6:345–347

    Article  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:239–245

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237

    PubMed  CAS  Google Scholar 

  • Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  PubMed  CAS  Google Scholar 

  • Gless C, Lörz H, Jähne-Gärtner A (1998a) Establishment of a highly efficient regeneration system from leaf base segments of oat (Avena sativa L.). Plant Cell Rep 17:441–445

    Article  CAS  Google Scholar 

  • Gless C, Lörz H, Jähne-Gärtner A (1998b) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J Plant Physiol 152:151–157

    CAS  Google Scholar 

  • Gordon-Kamm W, Dilkes BP, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Woo Y-M, Bidney D, Larkins BA (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc Natl Acad Sci 99:11975–11980

    Article  PubMed  CAS  Google Scholar 

  • Han C-d, Coe Jr. EH, Martienssen RA (1992) Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J 11:4037–4046

    PubMed  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T (1994) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Horn ME, Sherrad JH, Widholm JM (1983) Photoautotrophic growth of soybean cells in suspension culture. Plant Physiol 72:426–429

    PubMed  CAS  Google Scholar 

  • Huang F-C, Klaus SMJ, Herz S, Zou Z, Koop H-U, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    Article  PubMed  CAS  Google Scholar 

  • Igasaki T, Akashi N, Ujino-Ihara T, Matsubayashi Y, Sakagami Y, Shinohara K (2003) Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol 44:1412–1416

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kemper EL, da Silva MJ, Arruda P (1996) Effect of microprojectile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.) embryos. Plant Sci 121:85–93

    Article  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Kramer C, DiMaio J, Carswell GK, Shillito RD (1993) Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454–458

    Article  CAS  Google Scholar 

  • Lorbiecke R, Steffens M, Tomm JM, Scholten S, von Wiegen P, Kranz E, Wienand U, Sauter M (2005) Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. J Exp Bot 56:1805–1819

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Takagi L, Sakagami Y (1997) Phytosulfokine-a, a sulfated pentapeptide stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci USA 94:13357–13362

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102:11940–11944

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Rudas VA, Lörz H, Kumlehn J (1999) Embryogenic callus formation and plant regeneration from leaf base segments of barley (Hordeum vulgare L.). J Plant Physiol 155:371–375

    CAS  Google Scholar 

  • Ray SD, Ghosh PD (1990) Somatic embryogenesis and plant regeneration from cultured leaf explants of Zea mays. Ann Bot 66:497–500

    Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Timmermans MCP, Maliga P, Vieira J, Messing J (1990) The pFF plasmids: cassettes utilising CaMV sequences for expression of foreign genes in plants. J Biotechnol 14:333–344

    Article  PubMed  CAS  Google Scholar 

  • Weisser P, Krämer R, Sprenger GA (1996) Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as novel growth substrate, which can be used as a selective marker. Appl Environ Microbiol 62:4155–4161

    PubMed  CAS  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  • Zhang S, Lemaux PG (2004) Molecular analysis of in vitro shoot organogenesis. Crit Rev Plant Sci 23:325–335

    Article  CAS  Google Scholar 

  • Zhang S, Williams-Carrier R, Lemaux PG (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 21:263–270

    Article  CAS  Google Scholar 

  • Zhong H, Srinivasan C, Sticklen MB (1992a) In-vitro morphogenesis of corn (Zea mays L.). I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187:483–489

    Article  CAS  Google Scholar 

  • Zhong H, Srinivasan C, Sticklen MB (1992b) In-vitro morphogenesis of corn (Zea mays L.). II. Differentiation of ear and tassel clusters from cultured shoot apices and immature inflorescences. Planta 187:490–497

    CAS  Google Scholar 

  • Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110:1097–1107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Syngenta for the gift of vector pNOV2820. We thank the MPI-MP Green Team for plant care and cultivation. Mohammad Ahmadabadi is the recipient of a fellowship from the Ministry of Science, Research and Technology of the Islamic Republic of Iran. This research was supported by the Max Planck Society. Support from Monsanto Co., St. Louis, USA, during the early phase of this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadabadi, M., Ruf, S. & Bock, R. A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16, 437–448 (2007). https://doi.org/10.1007/s11248-006-9046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9046-y

Keywords

Navigation