Skip to main content
Log in

Metal-Free Catalytic Wet Oxidation: From Powder to Structured Catalyst Using N-Doped Carbon Nanotubes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work shows a promising N-doped carbon catalyst for the oxidation of oxalic acid by catalytic wet oxidation, which is able to compete with the traditional noble metal and metal oxide catalysts used in the process. After preliminary studies conducted in batch mode, the catalytic performance of the metal-free carbon nanotubes, both in powder form and supported on a macrostructured carrier (a cordierite monolith), was evaluated under continuous operating conditions. The ability of the N-functionalities to promote activation and chemisorption of oxygen led not only to fast oxalic acid mineralization under batch mode (5 min of reaction to reach full mineralization), but also to good performance under continuous operation (more than 90% conversion of oxalic acid in the steady state, using the powder and around 55% using the catalyst immobilized on a honeycomb cordierite monolith).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184

    Article  CAS  Google Scholar 

  2. Mishra VS, Mahajani VV, Joshi JB (1995) Wet air oxidation. Ind Eng Chem Res 34:2–48

    Article  CAS  Google Scholar 

  3. Rocha RP, Restivo J, Sousa JPS, Órfão JJM, Pereira MFR, Figueiredo JL (2015) Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catal Today 241(Part A): 73–79

    Google Scholar 

  4. Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh DB (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J 73:143–160

    Article  CAS  Google Scholar 

  5. Luck F (1999) Wet air oxidation: past, present and future. Catal Today 53:81–91

    Article  CAS  Google Scholar 

  6. Bhargava SK, Tardio J, Prasad J, Foger K, Akolekar DB, Grocott SC (2006) Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res 45:1221–1258

    Article  CAS  Google Scholar 

  7. Silva A (2009) Environmental catalysis from nano- to macro-scale. Mater Technol 43:113–121

    Google Scholar 

  8. Cybulski A (2007) Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind Eng Chem Res 46:4007–4033

    Article  CAS  Google Scholar 

  9. Morales-Torres S, Silva AMT, Pérez-Cadenas AF, Faria JL, Maldonado-Hódar FJ, Figueiredo JL, Carrasco-Marín F (2010) Wet air oxidation of trinitrophenol with activated carbon catalysts: effect of textural properties on the mechanism of degradation. Appl Catal B 100:310–317

    Article  CAS  Google Scholar 

  10. Yang S, Li X, Zhu W, Wang J, Descorme C (2008) Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 46:445–452

    Article  CAS  Google Scholar 

  11. Milone C, Shahul Hameed AR, Piperopoulos E, Santangelo S, Lanza M, Galvagno S (2011) Catalytic wet air oxidation of p-coumaric acid over carbon nanotubes and activated carbon. Ind Eng Chem Res 50:9043–9053

    Article  CAS  Google Scholar 

  12. Rocha RP, Sousa JPS, Silva AMT, Pereira MFR, Figueiredo JL (2011) Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry. Appl Catal B 104:330–336

    Article  CAS  Google Scholar 

  13. Rocha RP, Silva AMT, Romero SMM, Pereira MFR, Figueiredo JL (2014) The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation. Appl Catal B 147:314–321

    Article  CAS  Google Scholar 

  14. Yang S, Sun Y, Yang H, Wan J (2015) Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts. Front Environ Sci Eng 9:436–443

    Article  CAS  Google Scholar 

  15. Santos DFM, Soares OSGP, Silva AMT, Figueiredo JL, Pereira MFR (2016) Catalytic wet oxidation of organic compounds over N-doped carbon nanotubes in batch and continuous operation. Appl Catal B 199:361–371

    Article  CAS  Google Scholar 

  16. Restivo J, Rocha RP, Silva AMT, Órfão JJM, Pereira MFR, Figueiredo JL (2014) Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chin J Catal 35:896–905

    Article  CAS  Google Scholar 

  17. Rocha RP, Soares OSGP, Figueiredo JL, Pereira MFR (2016) Tuning CNT properties for metal-free environmental catalytic applications C 2:17

    Google Scholar 

  18. Soares OSGP, Rocha RP, Gonçalves AG, Figueiredo JL, Órfão JJM, Pereira MFR (2016) Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Appl Catal B 192:296–303

    Article  CAS  Google Scholar 

  19. Figueiredo JL, Pereira MFR (2009) Carbon as catalyst. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley & Sons, Inc., Hoboken, pp 177–217

    Google Scholar 

  20. Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175

    Article  Google Scholar 

  21. Quintanilla A, Dominguez CM, Casas JA, Rodriguez JJ (2012) Emerging catalysts for wet air oxidation process, focus on catalysis research: new developments. In: Ghang M, Ramel B (eds) Focus on catalysis research: new developments chapters. Nova Science Publishers, Inc., pp. 237–259

  22. de Lathouder KM, Crezee E, Kapteijn F, Moulijn JA (2009) Carbon monoliths in catalysis. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley & Sons, Inc., Hoboken, pp 401–427

    Google Scholar 

  23. Moulijn JA, Kreutzer MT, Nijhuis TA, Kapteijn F (2011) Chap. 5—Monolithic catalysts and reactors: high precision with low energy consumption, In: Gates BC, Knözinger H (eds) Advances in catalysis. Academic Press, Cambridge, pp. 249–327

    Google Scholar 

  24. Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T (2004) Monoliths as multiphase reactors: a review. AIChE J 50:2918–2938

    Article  CAS  Google Scholar 

  25. Crynes LL, Cerro RL, Abraham MA (1995) Monolith froth reactor: development of a novel three-phase catalytic system. AIChE J 41:337–345

    Article  CAS  Google Scholar 

  26. Santos A, Yustos P, Durbán B, García-Ochoa F (2001) Oxidation of phenol in aqueous solution with copper catalysts. Catal Today 66:511–517

    Article  CAS  Google Scholar 

  27. Klinghoffer AA, Cerro RL, Abraham MA (1998) Catalytic wet oxidation of acetic acid using platinum on alumina monolith catalyst. Catal Today 40:59–71

    Article  CAS  Google Scholar 

  28. Luck F, Djafer M, Bourbigot MM (1995) Catalytic wet air oxidation of biosolids in a monolithic reactor. Catal Today 24:73–78

    Article  CAS  Google Scholar 

  29. Takahashi Y, Nitta K, Ohya H, Oguchi M (1987) The applicability of catalytic wet-oxidation to celss. Adv Space Res 7:81–84

    Article  CAS  Google Scholar 

  30. Hosseini AM, Tungler A, Schay Z, Szabó S, Kristóf J, Széles É, Szentmiklósi L (2012) Comparison of precious metal oxide/titanium monolith catalysts in wet oxidation of wastewaters. Appl Catal B 127:99–104

    Article  CAS  Google Scholar 

  31. Szabados E, Srankó DF, Somodi F, Maróti B, Kemény S, Tungler A (2016) Wet oxidation of dimethylformamide via designed experiments approach studied with Ru and Ir containing Ti mesh monolith catalysts. J Ind Eng Chem 34:405–414

    Article  CAS  Google Scholar 

  32. Szabados E, Sági G, Somodi F, Maróti B, Srankó D, Tungler A (2017) Wet air oxidation of paracetamol over precious metal/Ti mesh monolith catalyst. J Ind Eng Chem 46:364–372

    Article  CAS  Google Scholar 

  33. Szabados E, Sági G, Kovács A, Takács E, Wojnárovits L, Tungler A (2015) Comparison of catalysis and high energy irradiation for the intensification of wet oxidation as process wastewater pretreatment. React Kinet Mech Catal 116:95–103

    Article  CAS  Google Scholar 

  34. Devlin HR, Harris IJ (1984) Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind Eng Chem Fundam 23:387–392

    Article  CAS  Google Scholar 

  35. Shende RV, Levec J (1999) Wet oxidation kinetics of refractory low molecular mass carboxylic acids. Ind Eng Chem Res 38:3830–3837

    Article  CAS  Google Scholar 

  36. Shende RV, Mahajani VV (1994) Kinetics of wet air oxidation of glyoxalic acid and oxalic acid. Ind Eng Chem Res 33:3125–3130

    Article  CAS  Google Scholar 

  37. Gallezot P, Laurain N, Isnard P (1996) Catalytic wet-air oxidation of carboxylic acids on carbon-supported platinum catalysts. Appl Catal B 9:L11–L17

    Article  CAS  Google Scholar 

  38. Lee D-K, Kim D-S (2000) Catalytic wet air oxidation of carboxylic acids at atmospheric pressure. Catal Today 63:249–255

    Article  CAS  Google Scholar 

  39. Roy S, Saroha AK (2014) Ceria promoted [gamma]-Al2O3 supported platinum catalyst for catalytic wet air oxidation of oxalic acid: kinetics and catalyst deactivation. RSC Adv 4:56838–56847

    Article  CAS  Google Scholar 

  40. Rocha RP, Soares OSGP, Gonçalves AG, Órfão JJM, Pereira MFR, Figueiredo JL (2017) Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation. Appl Catal A 548:62–70

    Article  CAS  Google Scholar 

  41. Rocha RP, Gonçalves AG, Pastrana-Martínez LM, Bordoni BC, Soares OSGP, Órfão JJM, Faria JL, Figueiredo JL, Silva AMT, Pereira MFR (2015) Nitrogen-doped graphene-based materials for advanced oxidation processes. Catal Today 249:192–198

    Article  CAS  Google Scholar 

  42. Soares OSGP, Rocha RP, Gonçalves AG, Figueiredo JL, Órfão JJM, Pereira MFR (2015) Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon 91:114–121

    Article  CAS  Google Scholar 

  43. Soares OSGP, Gonçalves AG, Delgado JJ, Órfão JJM, Pereira MFR (2015) Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts. Catal Today 249:199–203

    Article  CAS  Google Scholar 

  44. Ba H, Liu Y, Truong-Phuoc L, Duong-Viet C, Mu X, Doh WH, Tran-Thanh T, Baaziz W, Nguyen-Dinh L, Nhut J-M, Janowska I, Begin D, Zafeiratos S, Granger P, Tuci G, Giambastiani G, Banhart F, Ledoux MJ, Pham-Huu C (2015) A highly N-doped carbon phase “dressing” of macroscopic supports for catalytic applications. Chem Commun 51:14393–14396

    Article  CAS  Google Scholar 

  45. Gomes HT (2002) Oxidação Catalítica por Via Húmida de Poluentes Orgânicos. Faculdade de Engenharia da Universidade do Porto, Porto, pp. 242

    Google Scholar 

  46. Silva AMT, Quinta-Ferreira RM, Levec J (2003) Catalytic and noncatalytic wet oxidation of formaldehyde. A novel kinetic model. Ind Eng Chem Res 42:5099–5108

    Article  CAS  Google Scholar 

  47. Apolinário ÂC, Silva AMT, Machado BF, Gomes HT, Araújo PP, Figueiredo JL, Faria JL (2008) Wet air oxidation of nitro-aromatic compounds: reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Appl Catal B 84:75–86

    Article  Google Scholar 

  48. Gomes HT, Machado BF, Ribeiro A, Moreira I, Rosário M, Silva AMT, Figueiredo JL, Faria JL (2008) Catalytic properties of carbon materials for wet oxidation of aniline. J Hazard Mater 159:420–426

    Article  CAS  Google Scholar 

  49. Faria PCC, Órfão JJM, Pereira MFR (2008) Activated carbon catalytic ozonation of oxamic and oxalic acids. Appl Catal B 79:237–243

    Article  CAS  Google Scholar 

  50. Pollak E, Salitra G, Soffer A, Aurbach D (2006) On the reaction of oxygen with nitrogen-containing and nitrogen-free carbons. Carbon 44:3302–3307

    Article  CAS  Google Scholar 

  51. Szymański GS, Grzybek T, Papp H (2004) Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3. Catal Today 90:51–59

    Article  Google Scholar 

  52. Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A (2005) Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Top Catal 33:3–50

    Article  Google Scholar 

  53. Figueiredo JL, Pereira MFR (2010) The role of surface chemistry in catalysis with carbons. Catal Today 150:2–7

    Article  CAS  Google Scholar 

  54. Beltrán FJ, Rivas FJ, Fernández LA, Álvarez PM (2002) R. Montero-de-Espinosa, kinetics of catalytic ozonation of oxalic acid in water with activated carbon. Ind Eng Chem Res 41:6510–6517

    Article  Google Scholar 

  55. Hoigné J (1997) Inter-calibration of OH radical sources and water quality parameters. Water Sci Technol 35:1–8

    Article  Google Scholar 

  56. Stöffler B, Luft G (1999) Influence of the radical scavenger t-butanol on the wet air oxidation of p-toluenesulfonic acid. Chem Eng Technol 22:409–412

    Article  Google Scholar 

  57. Méndez-Díaz J, Sánchez-Polo M, Rivera-Utrilla J, Canonica S, von Gunten U (2010) Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chem Eng J 163:300–306

    Article  Google Scholar 

  58. Vaidya PD, Mahajani VV (2002) Insight into sub-critical wet oxidation of phenol. Adv Environ Res 6:429–439

    Article  CAS  Google Scholar 

  59. Boehm H-P (2009) Catalytic properties of nitrogen-containing carbons. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley & Sons, Inc., Hoboken, pp 219–265

    Google Scholar 

  60. Stüber F, Polaert I, Delmas H, Font J, Fortuny A, Fabregat A (2001) Catalytic wet air oxidation of phenol using active carbon: performance of discontinuous and continuous reactors. J Chem Technol Biotechnol 76:743–751

    Article  Google Scholar 

Download references

Acknowledgements

This work is a result of project “AIProcMat@N2020—Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and of Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM funded by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia. D. Santos and R.P. Rocha acknowledge grants received from FCT (PD/BD/105983/2014 and SFRH/BD/95411/2013, respectively). The authors are indebted to Dr. Carlos M. Sá (CEMUP) for assistance with XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel P. Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, R.P., Santos, D.F.M., Soares, O.S.M.P. et al. Metal-Free Catalytic Wet Oxidation: From Powder to Structured Catalyst Using N-Doped Carbon Nanotubes. Top Catal 61, 1957–1966 (2018). https://doi.org/10.1007/s11244-018-1029-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1029-8

Keywords

Navigation