Skip to main content
Log in

Comparison of catalysis and high energy irradiation for the intensification of wet oxidation as process wastewater pretreatment

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Enhancing reaction rate in wet oxidation (WO) with catalysis and high energy irradiation was tested by comparing them with the usual thermal reaction. Total organic carbon and chemical oxygen demand (COD) conversion values of phenol degradation in the thermal WO were <20 % (150 °C, 20 bar, 2 h); in the catalytic reaction, they were nearly 60 %. Irradiation assisted oxidation produced more than 80 % COD conversion (30 min, absorbed dose ~18 kGy). This considerable increase in the oxidation rate at relatively low temperature is suggested to be due to temperature independent oxidation chain initiation by irradiation. Both the catalytic and especially the irradiation assisted reaction (at and above 125 °C) proved to be much more effective than the thermal WO. The condition of the application of Ti mesh monolith catalyst is the preparation of more leaching-resistant Ti mesh/Ru/Ir oxide catalyst with acceptable lifetime (>1000 h), that of the electron beam irradiation is the solving the problem of the introduction of the electron beam into the reaction mixture under high oxygen pressure without significant loss of intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gadipelly C, Perez-Gonzalez A, Yadav GD, Ortiz I, Ibanez R, Rathod VK, Marathe KV (2014) Pharmaceutical industry wastewater: review of the technologies for wastewater treatment and reuse. Ind Eng Chem Res 53:11571–11592. doi:10.1021/ie501210j

    Article  CAS  Google Scholar 

  2. Zimmermann FJ, Diddams DG (1960) The Zimmermann process and its application in the pulp and paper industry. TAPPI 43:710–715

    Google Scholar 

  3. Bhargava S, Tardio J, Prasad J, Föger K, Akolekar D, Grocott S (2006) Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res 45:1221–1258. doi:10.1021/ie051059n

    Article  CAS  Google Scholar 

  4. Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184. doi:10.1016/j.cattod.2007.03.035

    Article  CAS  Google Scholar 

  5. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment: II hybrid methods. Adv Environ Sci 8:553–597. doi:10.1016/S1093-0191(03)00031-5

    CAS  Google Scholar 

  6. Santos A, Yustos P, Rodriguez S, Simon E, Garcia-Ochoa F (2007) Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton’s pretreatment: effect of H2O2 dosage and temperature. J Hazard Mater 146:595–601. doi:10.1016/j.jhazmat.2007.04.061

    Article  CAS  Google Scholar 

  7. Cybulski A (2007) Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind Eng Chem Res 47:4007–4033. doi:10.1021/ie060906z

    Article  Google Scholar 

  8. Hosseini AM, Tungler A, Schay Z, Szabó S, Kristóf J, Széles É, Szentmiklósi L (2012) Comparison of precious metal oxide/titanium monolith catalysts in wet oxidation of wastewaters. Appl Catal B 127:99–104. doi:10.1016/j.apcatb.2012.08.004

    Article  CAS  Google Scholar 

  9. Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G (2015) Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta. doi:10.1016/j.ica.2014.12.017

    Google Scholar 

  10. Wang J, Zhu W, Yang S, Wang W, Zhou Y (2008) Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Appl Cat B 78:30–37. doi:10.1016/j.apcatb.2007.08.014

    Article  CAS  Google Scholar 

  11. de los Monteros AE, Lafaye G, Cervantes A, Del Angel G, Barbier J Jr, Torres G (2015) Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides. Catal Today. doi:10.1016/j.cattod.2015.01.009

    Google Scholar 

  12. Keav S, Martin A, Barbier J Jr, Duprez D (2010) Deactivation and reactivation of noble metal catalysts tested in the catalytic wet air oxidation of phenol. Catal Today 151:143–147. doi:10.1016/j.cattod.2010.01.025

    Article  CAS  Google Scholar 

  13. Chamam M, CsM Földváry, Hosseini AM, Tungler A, Takács E, Wojnárovits L (2012) Mineralization of aqueous phenolate solutions: a combination of irradiation treatment and wet oxidation. Radiat Phys Chem 81:1484–1488. doi:10.1016/j.radphyschem.2011.11.013

    Article  CAS  Google Scholar 

  14. Lin K, Cooper WJ, Nickelsen MG, Kurucz ChN, Waite TD (1995) Decomposition of aqueous solution of phenol using high energy electron beam irradiation – a large scale study. Appl Radiat Isot 46:1307–1316. doi:10.1016/0969-8043(95)00236-7

    Article  CAS  Google Scholar 

  15. Follut F, Pellizzari F, Karpel Vel Leitner N, Legube B (2007) Modelling of phenol removal in aqueous solution depending on the electron beam energy. Radiat Phys Chem 76:827–833. doi:10.1016/j.radphyschem.2006.05.016

    Article  CAS  Google Scholar 

  16. Bonin J, Janik I, Janik D, Bartels DM (2007) Reaction of the hydroxyl radical with phenol in water up to supercritical conditions. J Phys Chem A 111:1869–1878. doi:10.1021/jp0665325

    Article  CAS  Google Scholar 

  17. Kozmér Zs, Arany E, Alapi T, Takács E, Wojnárovits L, Dombi A (2014) Determination of the rate constant of hydroperoxyl radical reaction with phenol. Radiat Phys Chem 102:135–138. doi:10.1016/j.radphyschem.2014.04.029

    Article  Google Scholar 

  18. Santos A, Yustos P, Quintanilla A (2005) García-Ochoa F, Kinetic model of wet oxidation of phenol at basic pH using a copper catalyst. Chem Eng Sci 60:4866–4878. doi:10.1016/j.ces.2005.04.015

    Article  CAS  Google Scholar 

  19. Wan JF, Feng YJ, Cai WM, Yang SX, Sun XJ (2004) Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts. J Environ Sci 16:556–558

  20. Devlin HR, Harris IJ (1984) Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind Eng Chem Fundam 23:387–392. doi:10.1021/i100016a002

    Article  CAS  Google Scholar 

  21. Zhang Q, Chuang KT (1999) Lumped kinetic model for catalytic wet oxidation of organic compounds in industrial wastewater. AlChE J 45:145–150. doi:10.1002/aic.690450112

    Article  CAS  Google Scholar 

  22. Kim KH, Ihm SK (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34. doi:10.1016/j.jhazmat.2010.11.011

    Article  CAS  Google Scholar 

  23. Joglekar HS, Samant SD, Joshi JB (1991) Kinetics of wet air oxidation of phenol and substituted phenols. Water Res 25:135–145. doi:10.1016/0043-1354(91)90022-I

    Article  CAS  Google Scholar 

  24. Kolaczkowski ST, Beltran FJ, McLurgh DB, Rivas FJ (1997) Wet air oxidation of phenol: factors that may influence global kinetics. Process Saf Environ Prot 75:257–265. doi:10.1205/095758297529138

    Article  CAS  Google Scholar 

  25. Rivas FJ, Kolaczkowski ST, Beltran FJ, McLurgh DB (1998) Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chem Eng Sci 53:2575–2586. doi:10.1016/S0009-2509(98)00060-8

    Article  CAS  Google Scholar 

  26. Álvarez PM, McLurgh D, Plucinski P (2002) Copper oxide mounted on activated carbon as catalyst for wet air oxidation of aqueous phenol. 1. Kinetic and mechanistic approaches. Ind Eng Chem Res 41:2147–2152. doi:10.1021/ie0104464

    Article  Google Scholar 

  27. Santos A, Yustos P, Quintanilla A, García-Ochoa F (2004) Lower toxicity route in catalytic wet oxidation of phenol at basic pH by using bicarbonate media. Appl Catal B 53:181–194. doi:10.1016/j.apcatb.2004.04.022

    Article  CAS  Google Scholar 

  28. Hosseini AM, Bakos V, Jobbágy A, Tardy GM, Mizsey P, Makó M, Tungler A (2011) Co-treatment and utilization of liquid pharmaceutical wastes. Chem Eng 55:3–10. doi:10.3311/pp.ch.2011-1.01

    CAS  Google Scholar 

  29. Hosseini AM, Tungler A, Bakos V (2011) Wet oxidation of process wastewaters of fine chemical and pharmaceutical origin. Reac Kinet Mech Cat 103:251–260. doi:10.1007/s11144-011-0315-2

    Article  CAS  Google Scholar 

  30. Hosseini AM, Tungler A, Horváth ZsE, Schay Z, Széles É (2011) Catalytic wet oxidation of real process wastewaters. Chem Eng 55:49–57. doi:10.3311/pp.ch.2011-2.02

    CAS  Google Scholar 

  31. Mantzavinos D, Sahibzada M, Livingston AG, Metcalfe IS, Hellgardt K (1999) Wastewater treatment: wet air oxidation as a precursor to biological treatment. Catal Today 53:93–106. doi:10.1016/S0920-5861(99)00105-4

    Article  CAS  Google Scholar 

  32. Debellefontaine H, Foussard JN (2000) Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manage 20:15–25. doi:10.1016/S0956-053X(99)00306-2

    Article  CAS  Google Scholar 

  33. Kovács A, Slezsák I, McLaughlin WL, Miller A (1995) Oscillometric and conductometric analysis of aqueous and organic dosimeter solutions. Radiat Phys Chem 46:1211–1215. doi:10.1016/0969-806X(95)00357-4

    Article  Google Scholar 

  34. Spinks JWT, Woods RJ (1990) An Introduction to Radiation Chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  35. Bevan PLT, Johnson GRA (1973) Kinetics of ozone formation in the pulse radiolysis of oxygen gas. J Chem Soc Faraday Trans 1. Phys Chem 69:216–227. doi:10.1039/F19736900216

    CAS  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank Budapest Sewage Works Ltd. (FCSM) and Swiss-Hungarian Cooperation SH7/2/14 project for their financial supports. E. Szabados acknowledges the support of the Hungarian Academy of Sciences and the Centre of Energy Research for her scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Tungler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabados, E., Sági, G., Kovács, A. et al. Comparison of catalysis and high energy irradiation for the intensification of wet oxidation as process wastewater pretreatment. Reac Kinet Mech Cat 116, 95–103 (2015). https://doi.org/10.1007/s11144-015-0894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0894-4

Keywords

Navigation