Skip to main content
Log in

Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Wet air oxidation (WAO) is one of effective technologies to eliminate hazardous, toxic and highly concentrated organic compounds in the wastewater. In the paper, multi-walled carbon nanotubes (MWCNTs), functionalized by O3, were used as catalysts in the absence of any metals to investigate the catalytic activity in the catalytic wet air oxidation (CWAO) of phenol, nitrobenzene (NB) and aniline at the mild operating conditions (reaction temperature of 155°C and total pressure of 2.5 MPa) in a batch reactor. The MWCNTs were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), gas adsorption measurements (BET), fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The functionalized MWCNTs showed good catalytic performance. In the CWAO of phenol over the functionalized MWCNTs, total phenol removal was obtained after 90 min run, and the reaction apparent activation energy was ca. 40 kJ·mol−1. The NB was not removed in the CWAO of single NB, while ca. 97% NB removal was obtained and 40% NB removal was attributed to the catalytic activity after 180 min run in the presence of phenol. Ca. 49% aniline conversion was achieved after 120 min run in the CWAO of aniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y T. Effect of chemical oxidation on anerobic biodegradation of model phenolic compounds. Water Environment Research, 1992, 64(3): 268–273

    Article  CAS  Google Scholar 

  2. Lee S H, Carberry J B. Biodegradation of PCP enhanced by chemical oxidation pretreatment. Water Environment Research, 1992, 64(5): 682–690

    Article  CAS  Google Scholar 

  3. Li H B, Cao H B, Li Y P, Zhang Y, Liu H R. Effect of organic compounds on nitrite accumulation during the nitrification process for coking wastewater. Water Science & Technology, 2010, 62(9): 2096–2105

    Article  CAS  Google Scholar 

  4. Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environmental Science & Technology, 2012, 46(18): 10191–10198

    CAS  Google Scholar 

  5. Mishra V S, Mahajani V V, Joshi J B. Wet air oxidation. Industrial & Engineering Chemistry Research, 1995, 34(1): 2–48

    Article  CAS  Google Scholar 

  6. Luck F. Wet air oxidation: past, present and future. Catalysis Today, 1999, 53(1): 81–91

    Article  CAS  Google Scholar 

  7. Yang S X, Liu Z Q, Huang X H, Zhang B P. Wet air oxidation of epoxy acrylate monomer industrial wastewater. Journal of Hazardous Materials, 2010, 178(1–3): 786–791

    Article  CAS  Google Scholar 

  8. Oliviero L, Barbier J Jr, Duprez D. Wet air oxidation of nitrogencontaining organic compounds and ammonia in aqueous media. Applied Catalysis B: Environmental, 2003, 40(3): 163–184

    Article  CAS  Google Scholar 

  9. Benitez F J, García J, Acero J L, Real F J, Roldan G. Non-catalytic and catalytic wet air oxidation of pharmaceuticals in ultra-pure and natural waters. Process Safety and Environmental Protection, 2011, 89(5): 334–341

    Article  CAS  Google Scholar 

  10. Chen I P, Lin S S, Wang C H, Chang L, Chang J S. Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2004, 50(1): 49–58

    Article  CAS  Google Scholar 

  11. Yang S X, Besson M, Descorme C. Catalytic wet air oxidation of formic acid over Pt/CexZr1 − xO2 catalysts at low temperature and atmospheric pressure. Applied Catalysis B: Environmental, 2010, 100(1–2): 282–288

    Google Scholar 

  12. Wang J B, Zhu W P, Yang S X, Wang W, Zhou Y R. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37

    Article  CAS  Google Scholar 

  13. Tran N D, Besson M, Descorme C. TiO2-supported gold catalysts in the catalytic wet air oxidation of succinic acid: influence of the preparation, the storage and the pre-treatment conditions. New Journal of Chemistry, 2011, 35(10): 2095–2104

    Article  CAS  Google Scholar 

  14. Bistan M, Tišler T, Pintar A. Ru/TiO2 catalyst for efficient removal of estrogens from aqueous samples by means of wet-air oxidation. Catalysis Communications, 2012, 22(10): 74–78

    Article  CAS  Google Scholar 

  15. Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A, General, 2003, 253(2): 337–358

    Article  CAS  Google Scholar 

  16. Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics in Catalysis, 2005, 33(1–4): 3–50

    Article  Google Scholar 

  17. Suarez-Ojeda ME, Stüber F, Fortuny A, Fabregat A, Carrera J, Font J. Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst. Applied Catalysis B: Environmental, 2005, 58(1–2): 105–114

    Article  CAS  Google Scholar 

  18. Yang S X, Li X, Zhu WP, Wang J B, Descorme C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46(3): 445–452

    Article  CAS  Google Scholar 

  19. Gomes H T, Machado B F, Ribeiro A, Moreira I, Rosário M, Silva A M T, Figueiredo J L, Faria J L. Catalytic properties of carbon materials for wet oxidation of aniline. Journal of Hazardous Materials, 2008, 159(2–3): 420–426

    Article  CAS  Google Scholar 

  20. Rocha R P, Sousa J P S, Silva AMT, Pereira M F R, Figueiredo J L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104(3–4): 330–336

    Article  CAS  Google Scholar 

  21. Soria-Sánchez M, Maroto-Valiente A, Álvarez-Rodríguez J, Muñoz-Andrés V, Rodríguez-Ramos I, Guerrero-Ruíz A. Carbon nanostrutured materials as direct catalysts for phenol oxidation in aqueous phase. Applied Catalysis B: Environmental, 2011, 104(1–2): 101–109

    Article  Google Scholar 

  22. Milone C, Hameed A R S, Piperopoulos E, Santangelo S, Lanza M, Galvagno S. Catalytic wet air oxidation of p-coumaric acid over carbon nanotubes and activated carbon. Industrial & Engineering Chemistry Research, 2011, 50(15): 9043–9053

    Article  CAS  Google Scholar 

  23. Yang S X, Wang X G, Yang H W, Sun Y, Liu Y X. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 2012, 233–234: 18–24

    Article  Google Scholar 

  24. Zhan W, Wang X C, Li D S, Ren Y Z, Liu D Q, Kang J X. Catalytic wet air oxidation of high concentration pharmaceutical wastewater. Water Science & Technology, 2013, 67(10): 2281–2286

    Article  CAS  Google Scholar 

  25. Martín-Hernández M, Carrera J, Suárez-Ojeda M E, Besson M, Descorme C. Catalytic wet air oxidation of a high strength pnitrophenol wastewater over Ru and Pt catalysts: Influence of the reaction conditions on biodegradability enhancement. Applied Catalysis B: Environmental, 2012, 123–24: 141–150

    Article  Google Scholar 

  26. Zhu WP, Bin Y J, Li Z H, Jiang Z P, Yin T. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater. Water Research, 2002, 36(8): 1947–1954

    Article  CAS  Google Scholar 

  27. Lin S S, Chang D J, Wang C H, Chen C C. Catalytic wet air oxidation of phenol by CeO2 catalyst — effect of reaction conditions. Water Research, 2003, 37(4): 793–800

    Article  CAS  Google Scholar 

  28. Sadana A, Katzer J R. Catalytic oxidation of phenol in aqueous solution over copper oxide. Industrial & Engineering Chemistry Fundamentals, 1974, 13(2): 127–134

    Article  CAS  Google Scholar 

  29. Li N, Descorme C, Besson M. Catalytic wet air oxidation of aqueous solution of 2-chlorophenol over Ru/zirconia catalysts. Applied Catalysis B: Environmental, 2007, 71(3–4): 262–270

    Article  CAS  Google Scholar 

  30. Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143–160

    Article  CAS  Google Scholar 

  31. Arslan-Alaton I, Ferry J L. H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water: kinetic and mechanistic aspects. Applied Catalysis B: Environmental, 2002, 38(4): 283–293

    Article  CAS  Google Scholar 

  32. Fu D M, Chen J P, Liang X M. Wet air oxidation of nitrobenzene enhanced by phenol. Chemosphere, 2005, 59(6): 905–908

    Article  CAS  Google Scholar 

  33. Ji L L, Shao Y, Xu Z Y, Zheng S R, Zhu D Q. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environmental Science & Technology, 2010, 44(16): 6429–6436

    Article  CAS  Google Scholar 

  34. Zhao L, Sun Z Z, Ma J, Liu H L. Influencing mechanism of bicarbonate on the catalytic ozonation of nitrobenzene in aqueous solution by ceramic honeycomb supported manganese. Journal of Molecular Catalysis A Chemical, 2010, 322(1–2): 26–32

    Article  CAS  Google Scholar 

  35. Mestl G, Maksimova N I, Keller N, Roddatis V V, Schlögl R. Carbon nanofilaments in heterogeneous catalysis: an industrial application for new carbon materials? Angewandte Chemie (International Edition in English), 2001, 40(11): 2066–2068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxia Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Sun, Y., Yang, H. et al. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts. Front. Environ. Sci. Eng. 9, 436–443 (2015). https://doi.org/10.1007/s11783-014-0681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0681-x

Keywords

Navigation