Skip to main content
Log in

Bimetallic Cobalt Nanoparticles (Co–M): Synthesis, Characterization, and Application in the Fischer–Tropsch Process

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

General synthesis schemes for size and composition controlled, bimetallic Co–M (M = Mn, Cu, Ru, Rh, Re) nanoparticles is reported. Characterization was carried out on the single particle level using scanning/transmission electron microscopy to confirm the bimetallic nature of the nanoparticles. In-situ synchrotron spectroscopy followed the near surface composition of the nanoparticles during oxidation and reduction treatments, as well as reactant gas conditions. The effect of the second transition metal on the Co reduction and Co surface concentration was studied, with Re being the most effective promoter to reduce the Co. The Co–M nanoparticles were tested for their CO hydrogenation (Fischer–Tropsch process) ability at industrial conditions of 20 bar and 250 °C, to understand the effect of a promoter in intimate contact with Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. BASF (1913) German Patent 29,378,7

  2. BASF (1914) French Patent 46,842,7

  3. Mittasch A, Schneider C (1916) Producing compounds containing carbon and hydrogen. US Patent 1,201,850

  4. Davis BH, Occelli ML (2006) Fischer-Tropsch synthesis, catalysts and catalysis. Elsevier Science, Boston

    Google Scholar 

  5. Anderson RB (1984) The Fischer-Tropsch synthesis. Academic Press, Orlando

    Google Scholar 

  6. Bezemer GL et al (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  CAS  PubMed  Google Scholar 

  7. den Breejen J et al (2009) On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 131:7197–7203

    Article  CAS  Google Scholar 

  8. Melaet G, Lindeman AE, Somorjai GA (2013) Cobalt particle size effects in the Fischer–Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica. Top Catal 57:500–507

    Article  CAS  Google Scholar 

  9. Yang J, Frøseth V, Chen D, Holmen A (2016) Particle size effect for cobalt Fischer-Tropsch catalysts based on in situ CO chemisorption. Surf Sci 648:67–73

    Article  CAS  Google Scholar 

  10. Ralston WT, Melaet G, Saephan T, Somorjai GA (2017) Evidence of structure sensitivity in the Fischer–Tropsch reaction on model cobalt nanoparticles by time-resolved chemical transient kinetics. Angew Chem Int Ed 56:7415–7419

    Article  CAS  Google Scholar 

  11. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  12. Tauster SJ, Fung SC, Baker RT, Horsley JA (1981) Strong interactions in supported-metal catalysts. Science 211:4487

    Article  Google Scholar 

  13. Melaet G et al (2014) Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. J Am Chem Soc 136:2260–2263

    Article  CAS  PubMed  Google Scholar 

  14. Iglesia E, Soled SL, Fiato Ra, Via GH (1993) Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts. J Catal 143:345–368

    Article  CAS  Google Scholar 

  15. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A Gen 161:59–78

    Article  CAS  Google Scholar 

  16. Jacobs G et al (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A Gen 233:263–281

    Article  CAS  Google Scholar 

  17. Ertl G, Knozinger H, Schuth F, Weitkamp J (2008) Handbook of heterogeneous catalysis. Wiley-VCH, Chichester

    Book  Google Scholar 

  18. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Am Chem Soc 107:1692–1744

    CAS  Google Scholar 

  19. Morales BYF, Weckhuysen BM (2006) Promotion effects in Co-based Fischer–Tropsch catalysis. Catalysis 19:1–40

    CAS  Google Scholar 

  20. Campbell CT (1990) Bimetallic surface chemistry. Annu Rev Phys Chem 41:775–837

    Article  CAS  Google Scholar 

  21. Rodriguez JA, Goodman DW (1991) Surface science studies of the electronic and chemical properties of bimetallic. J Phys Chem 95:4196–4206

    Article  CAS  Google Scholar 

  22. Alayoglu S et al (2011) CO2 hydrogenation studies on Co and CoPt bimetallic nanoparticles under reaction conditions using TEM, XPS and NEXAFS. Top Catal 54:778–785

    Article  CAS  Google Scholar 

  23. Iablokov V et al (2012) Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096

    Article  CAS  PubMed  Google Scholar 

  24. Van Embden J, Chesman ASR, Jasieniak JJ (2015) The heat-up synthesis of colloidal nanocrystals. Chem Mater 27:2246–2285

    Article  CAS  Google Scholar 

  25. Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y (2016) Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev 116:10414–10472

    Article  CAS  PubMed  Google Scholar 

  26. Liu W-C et al (2016) Co–Rh nanoparticles for the hydrogenation of carbon monoxide: catalytic performance towards alcohol production and ambient pressure x-ray photoelectron spectroscopy study. Catal Lett 146:1574–1580

    Article  CAS  Google Scholar 

  27. Fillman LM, Tang SC (1984) Thermal decomposition of metal carbonyls: a thermogravimetry-mass spectrometry study. Thermochim Acta 75:71–84

    Article  CAS  Google Scholar 

  28. Alayoglu S et al (2013) Surface composition changes of redox stabilized bimetallic CoCu nanoparticles supported on silica under H2 and O2 atmospheres and during reaction between CO2 and H2: in situ x-ray spectroscopic characterization. J Phys Chem C 117:21803–21809

    Article  CAS  Google Scholar 

  29. Werner S, Johnson GR, Bell AT (2014) Synthesis and characterization of supported cobalt–manganese nanoparticles as model catalysts for Fischer–Tropsch synthesis. ChemCatChem 6:2881–2888

    Article  CAS  Google Scholar 

  30. Carenco S et al (2015) Synthesis and structural evolution of nickel–cobalt nanoparticles under H2 and CO2. Small 11:3045–3053 https://doi.org/10.1002/smll.201402795

    Article  CAS  PubMed  Google Scholar 

  31. Van Schooneveld MM et al (2012) Composition tunable cobalt-nickel and cobalt-iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl. J Nanoparticle Res 14:991–1003

    Article  CAS  Google Scholar 

  32. Schmidt-Winkel P et al (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc 121:254–255

    Article  CAS  Google Scholar 

  33. Beaumont SK et al (2013) Exploring surface science and restructuring in reactive atmospheres of colloidally prepared bimetallic CuNi and CuCo nanoparticles on SiO2 in situ using ambient pressure X-ray photoelectron spectroscopy. Faraday Discuss 162:31

    Article  CAS  PubMed  Google Scholar 

  34. Tao F et al (2010) Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc 132:8697–8703

    Article  CAS  PubMed  Google Scholar 

  35. Lide DR (2004) CRC handbook of chemistry and physics. CRC Press, LLC, Boca Raton. https://doi.org/10.1021/ja041017a

    Book  Google Scholar 

  36. Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B 46:7157–7168

    Article  CAS  Google Scholar 

  37. Vitos L, Ruban AV, Skriver HL, Kollár J (1998) The surface energy of metals. Surf Sci 411:186–202

    Article  CAS  Google Scholar 

  38. Kittel C (2005) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  39. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press LLC, Boca Raton

    Book  Google Scholar 

  40. Owen EA, Madoc Jones D (1954) Effect of grain size on the crystal structure of cobalt. Proc Phys Soc Sect B 67: 456–466

    Article  Google Scholar 

  41. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117

    Article  CAS  PubMed  Google Scholar 

  42. Beitel G, Groot CPM, Oosterbeek H De, Wilson JH (1998) A combined in-situ PM-RAIRS and kinetic study of single-crystal cobalt catalysts under synthesis gas at pressures up to 300 mbar. J Phys Chem B 39:341–342

    Google Scholar 

  43. Weststrate CJ, Loosdrecht J Van De, Niemantsverdriet JW (2016) Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt. J Catal 342:1–16

    Article  CAS  Google Scholar 

  44. Ehrensperger M, Wintterlin, J (2014) In situ high-pressure high-temperature scanning tunneling microscopy of a Co (0 0 0 1) Fischer–Tropsch model catalyst. J Catal 319:274–282

    Article  CAS  Google Scholar 

  45. Cats KH et al (2013) X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work. Chem Commun 49:4622–4624

    Article  CAS  Google Scholar 

  46. Navarro V, van Spronsen MA, Frenken JWM (2016) In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nat Chem 8:929–934

    Article  CAS  PubMed  Google Scholar 

  47. Han HL, Melaet G, Alayoglu S, Somorjai GA (2015) In situ microscopy and spectroscopy applied to surfaces at work. ChemCatChem 7:3625–3638

    Article  CAS  Google Scholar 

  48. Bluhm H et al (2007) In situ X-ray photoelectron studies of gas–solid interfaces at near-ambient conditions. MRS Bull 32:1022–1030

    Article  CAS  Google Scholar 

  49. Oku M, Hirokawa K, Ikeda S (1975) X-ray photoelectron-spectroscopy of manganese-oxygen systems. J Electron Spectrosc Relat Phenom 7:465–473

    Article  CAS  Google Scholar 

  50. Biesinger MC et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  51. Ducros R, Fusy J (1987) Core level binding energy shifts of rhenium surface atoms for a clean and oxygenated surface. J Electron Spectros Relat Phenomena 42:305–312

    Article  Google Scholar 

  52. Miniussi E et al (2012) Non-local effects on oxygen-induced surface core level shifts of Re(0001). J Phys Chem C 116:23297–23307

    Article  CAS  Google Scholar 

  53. Greiner MT et al (2014) The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: an in-situ XPS study. Z Fur Phys Chem 228:521–541

    Article  CAS  Google Scholar 

  54. Fairley N (2005) CasaXPS. http://www.casaxps.com

  55. Abbate M et al (1992) Probing depth of soft X-ray absorption spectroscopy measured in total-electron-yield mode. Surf Interface Anal 18:65–69

    Article  CAS  Google Scholar 

  56. Zheng F et al (2011) In-situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H2) and oxidizing (O2) environments. Nano Lett 11:847–853

    Article  CAS  PubMed  Google Scholar 

  57. Papaefthimiou V et al (2011) When a metastable oxide stabilizes at the nanoscale: wurtzite CoO formation upon dealloying of PtCo nanoparticles. J Phys Chem Lett 2:900–904

    Article  CAS  PubMed  Google Scholar 

  58. Vada S, Hoff A, ÅdnaneS E, Schanke D, Holmen A (1995) Fischer-Tropsch synthesis on supported cobalt catalysts promoted by platinum and rhenium. Top Catal 2:155–162

    Article  CAS  Google Scholar 

  59. Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Fischer-Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS. Appl Catal A Gen 264:203–212

    Article  CAS  Google Scholar 

  60. Ronning M, Nicholson DG, Holmen A (2001) In situ EXAFS study of the bimetallic interaction in a rhenium-promoted alumina-supported cobalt Fischer-Tropsch catalyst. Catal Letters 72:141–146

    Article  CAS  Google Scholar 

  61. ASM International (1992) ASM handbook, ASM International, New York

    Google Scholar 

  62. Jacobs G, Ma W, Davis B (2014) Influence of reduction promoters on stability of cobalt/g-alumina Fischer-Tropsch synthesis catalysts. Catalysts 4:49–76

    Article  CAS  Google Scholar 

  63. Logdberg S et al (2010) On the selectivity of cobalt-based Fischer-Tropsch catalysts: evidence for a common precursor for methane and long-chain hydrocarbons. J Catal 274:84–98

    Article  CAS  Google Scholar 

  64. Rytter E, Tsakoumis NE, Holmen A (2016) On the selectivity to higher hydrocarbons in Co-based Fischer-Tropsch synthesis. Catal Today 261:3–16

    Article  CAS  Google Scholar 

  65. Xiang Y, Chitry V, Kruse N (2013) Selective catalytic CO hydrogenation to short- and long-chain C2+ alcohols. Catal Lett 143:936–941

    Article  CAS  Google Scholar 

  66. Xiang Y et al (2013) Long-chain terminal alcohols through catalytic CO hydrogenation. J Am Chem Soc 135:7114–7117

    Article  CAS  PubMed  Google Scholar 

  67. Xiang Y, Barbosa R, Kruse N (2014) Higher alcohols through CO hydrogenation over CoCu catalysts: influence of precursor activation. ACS Catal 4:2792–2800

    Article  CAS  Google Scholar 

  68. Tsai Y-T, Mo X, Goodwin JG (2012) The synthesis of hydrocarbons and oxygenates during CO hydrogenation on CoCuZnO catalysts: analysis at the site level using multiproduct SSITKA. J Catal 285:242–250

    Article  CAS  Google Scholar 

  69. Mo X, Tsai Y-T, Gao J, Mao D, Goodwin JG (2012) Effect of component interaction on the activity of Co/CuZnO for CO hydrogenation. J Catal 285:208–215

    Article  CAS  Google Scholar 

  70. van Helden P, Ciobîcă IM, Coetzer RL (2015) The size-dependent site composition of FCC cobalt nanocrystals. Catal Today 261:48–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.T. Ralston and W.-C. Liu would like to acknowledge and thank Professor G. A. Somorjai for his mentorship and research support. G. Melaet is thankful for the mentorship and post-doctoral position in the Somorjai group. This work made use of DOE Office of Science User Facilities (Molecular Foundry and Advanced Light Source at Lawrence Berkeley National Laboratory) and was supported by the Director, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérôme Melaet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralston, W.T., Liu, WC., Alayoglu, S. et al. Bimetallic Cobalt Nanoparticles (Co–M): Synthesis, Characterization, and Application in the Fischer–Tropsch Process. Top Catal 61, 1002–1015 (2018). https://doi.org/10.1007/s11244-018-0945-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0945-y

Keywords

Navigation