Skip to main content
Log in

Co–Rh Nanoparticles for the Hydrogenation of Carbon Monoxide: Catalytic Performance Towards Alcohol Production and Ambient Pressure X-Ray Photoelectron Spectroscopy Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

5 nm Co–Rh bimetallic nanoparticles with narrow size distributions and three different atomic compositions (2, 10, and 16 % Rh) were synthesized using a colloidal method. The bimetallic nanoparticles were loaded into mesoporous silica support MCF-17 and utilized in the catalytic hydrogenation of CO (Fischer–Tropsch synthesis). As compared to the pure 5 nm Co/MCF-17 catalyst, the bimetallic Co–Rh catalysts showed a similar activity while enhancing the selectivity towards alcohols, as evidenced by an increased ratio of alcohol to hydrocarbon products. Furthermore, larger alcohols such as propanol were formed with the addition of Rh, which is not observed with the pure Co/MCF-17 catalyst. In situ synchrotron based Ambient Pressure X-ray Photoelectron Spectroscopy studies on the Co–Rh samples revealed that Rh is segregated to the surface of the nanoparticles under reaction conditions, which plays an important role in altering the selectivity towards alcohol production. An optimum surface Rh concentration exists at ~9 at.%, where a fivefold enhancement in the alcohol-to-hydrocarbon ratio was achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klerk A (2007) Green Chem 9:560–565

    Article  Google Scholar 

  2. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  3. Lögdberg S, Lualdi M, Järås S, Walmsley JC, Blekkan EA, Rytter E, Holmen A (2010) J Catal 274:84–98

    Article  Google Scholar 

  4. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  5. Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2:1030–1058

    Article  CAS  Google Scholar 

  6. Calderone VR, Shiju NR, Ferreb DC, Rothenberga G (2011) Green Chem 13:1950–1959

    Article  CAS  Google Scholar 

  7. Burch R, Petch MI (1992) Appl Catal A 88:39–60

    Article  CAS  Google Scholar 

  8. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507–511

    Article  CAS  Google Scholar 

  9. Pei Y-P, Liu J-X, Zhao Y-H, Ding Y-J, Liu T, Dong W-D, Zhu H-J, Su H-Y, Yan L, Li J-L, Li W-X (2015) ACS Catal 5:3620–3624

    Article  CAS  Google Scholar 

  10. Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao J, Alivisatos AP, Kruse N, Somorjai GA (2012) Nano Lett 12:3091–3096

    Article  CAS  Google Scholar 

  11. Zhang Y, Grass ME, Habas SE, Tao F, Zhang T, Yang P, Somorjai GA (2007) J Phys Chem C 111:12243–12253

    Article  CAS  Google Scholar 

  12. Han Y, Lee SS, Ying JY (2007) Chem Mater 19:2292–2298

    Article  CAS  Google Scholar 

  13. Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) Rev Sci Instrum 81:053106

    Article  Google Scholar 

  14. Bluhm H, Hävecker M, Knop-Gericke A, Kiskinova M, Schlögl R, Salmeron M (2007) MRS Bull 32:1022–1030

    Article  CAS  Google Scholar 

  15. Salmeron M, Schlogl R (2008) Surf Sci Rep 63:169–199

    Article  CAS  Google Scholar 

  16. Yeh JJ, Lindau I (1985) Atom Data Nucl Data 32:1–155

    Article  CAS  Google Scholar 

  17. Melaet G, Ralston WT, Li C-S, Alayoglu S, An K, Musselwhite N, Kalkan B, Somorjai GA (2014) J Am Chem Soc 136:2260–2263

    Article  CAS  Google Scholar 

  18. Melaet G, Lindeman AE, Somorjai GA (2014) Top Catal 57:500–507

    Article  CAS  Google Scholar 

  19. Tanuma S, Powell CJ, Penn DR (1994) Surf Interface Anal 21:165–176

    Article  CAS  Google Scholar 

  20. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem Int Ed 47:8893–8896

    Article  CAS  Google Scholar 

  21. Muiioz A, Munuera G, Malet P, Gonzalez-Elipe AR, Espinos JP (1988) Surf Interface Anal 12:247–252

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy, under Contract DE-AC02-05CH11231, through the Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures program (FWP KC3101). The AP-XPS measurements were conducted on beamline 9.3.2 at The Advanced Light Source, which is supported, by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WC., Melaet, G., Ralston, W.T. et al. Co–Rh Nanoparticles for the Hydrogenation of Carbon Monoxide: Catalytic Performance Towards Alcohol Production and Ambient Pressure X-Ray Photoelectron Spectroscopy Study. Catal Lett 146, 1574–1580 (2016). https://doi.org/10.1007/s10562-016-1782-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1782-x

Keywords

Navigation