Skip to main content
Log in

Synthesis and DNA-binding properties of binuclear platinum complexes with two trans-[Pt(NH3)2Cl]+ units bridged by 4,4′-dipyridyl sulfide or selenide

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two novel dinuclear platinum complexes, {trans-[Pt(NH3)2Cl]2(dpsu)}(NO3)2 (1) and {trans-[Pt(NH3)2Cl]2 (dpse)}(NO3)2 (2) (dpsu = 4,4′-dipyridyl sulfide and dpsu = 4,4′-dipyridyl selenide) have been prepared for use as potential antitumor drugs. Compared to the known monofunctional complex, [cis-Pt(NH3)2Cl(4-methylpyridine)]NO3, (1) exhibits an almost two-fold stronger DNA-binding ability, a result suggesting that (1) may bind bifunctionally to DNA. Kinetic studies show that (1) significantly impedes intercalation of ethidium bromide (EtdBr) into DNA in 0.3 mol dm−3 KNO3 but not in 0.3 mol dm−3 KCl, indicating that the hydrolysis is the first step upon addition of the complex to DNA. Also, the complex may interact with DNA by non-intercalation. Unlike its dinuclear analogs linked by aliphatic diamines, complex (1) does not induce a transition of poly(dG–dC) · poly(dG–dC) from the B form to the Z form. Moreover, complex (1) significantly inhibits the cleavage activity of BamHI endonuclease, but has no effect on that of EcoRI endonuclease. In contrast, its cis analog containing two [cis-Pt(NH3)2Cl]+ units greatly inhibits those of both BamHI and EcoRI, a result suggesting that the two isomers with the same aromatic ligand probably have different properties of DNA binding, and that (1) possibly shows higher DNA-binding selectivity than its cisanalog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Farrell, Comments Inorg. Chem., 16, 373 (1995).

    Google Scholar 

  2. L.S. Hollis, Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy, in S.B. Howell (Ed), Plenum Press, New York, 1991, p. 115.

    Google Scholar 

  3. N. Farrell, Y. Qu, U. Bierbach, M. Valsecchi and E. Menta, B. Lippert (Ed), Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, Verlag-Basel, CH, 1999, p. 479.

    Google Scholar 

  4. N. Farrell, Y. Qu, L. Feng and B. Van Houten, Biochemistry, 29, 9522 (1990).

    PubMed  Google Scholar 

  5. J.M. Pérez, M.A. Futertes, C. Alonso and C. Navarro-Ranninger, Crit. Rev. Oncol. Hematol., 35, 109 (2000).

    Google Scholar 

  6. L.R. Kelland, C.F.J. Barnard, K.J. Mellish, M. Jones, P.M. Goddard, M. Valenti, A. Bryant, B.A. Murrer and K.R. Harrap, Cancer Res., 54, 5618 (1994).

    PubMed  Google Scholar 

  7. G.S. Baldew, C.A. Van Den Hamer, G. Los, N.E. Vermeulen, J.M. De Goeij and J. Gordon McVie, Cancer Res.,49, 3020 (1989).

    PubMed  Google Scholar 

  8. K. El-Bayoumy, Y.Chae, P. Upadhyaya, C. Meachter, L.A. Cohen and B.S. Reddy, Cancer Res., 52, 2402 (1992).

    PubMed  Google Scholar 

  9. A.S. Weisbergs, R. Heinle and B. Levine, J. Clin. Invest., 31, 217 (1952).

    PubMed  Google Scholar 

  10. G. Zhao, H. Lin, S. Zhu, H. Sun and Y. Chen, Anti-cancer Drug Design, 13, 769 (1998).

    PubMed  Google Scholar 

  11. G. Zhao, Ph.D. Thesis, Department of Chemistry, Nankai University, 1998.

  12. G. Zhao, H. Lin, S. Zhu, H. Sun and Y. Chen, J. Coord. Chem., 46, 79 (1998).

    Google Scholar 

  13. B. Boduszek and J.S. Wieezorek, Monatshefte für Chemie, 111, 1111 (1980).

    Google Scholar 

  14. L.S. Hollis, A.R. Amundsen and E.W. Stern, J. Med. Chem., 32, 128 (1989).

    PubMed  Google Scholar 

  15. G. Zhao, H. Lin, P.Yu, H. Sun, S. Zhu and Y. Chen, Chem. Biol. Interact., 116, 19 (1998).

    PubMed  Google Scholar 

  16. Y. Qu and N. Farrell, Inorg. Chem., 31, 930 (1992).

    Google Scholar 

  17. N.S. Gill, R.H. Nuttal, D.E. Scaife and D.W. Sharp, J. Nuclear Inorg. Chem., 18, 79 (1961).

    Google Scholar 

  18. R. Bastida, A. De Blas, P. Castro, D.E. Fenton, A. Macias, R. Rial, A. Rodriguez and T. Rodriguez-Blas, J. Chem. Soc., Dalton Trans., 1493 (1996).

  19. L.J. Butor and J.P. Macquet, Anal. Biochem., 89, 22 (1978).

    PubMed  Google Scholar 

  20. J. Kasparkova, N. Farrell and V. Brabec, J. Biol. Chem., 275, 15789 (2000).

    PubMed  Google Scholar 

  21. N. Farrell, T.G. Appleton, Y. Qu, J.D. Roberts, A.P.S. Fontes, K.A. Skov, P. Wu and Y. Zou, Biochemistry, 34, 15480 (1995).

    PubMed  Google Scholar 

  22. R. Zaludova, A. Zakovska, J. Kasparkova, Z. Balcarova, V. Kleinwachter, O. Vrana, N. Farrell and V. Brabec, Eur. J. Biochem., 246, 508 (1997).

    PubMed  Google Scholar 

  23. A. Johnson, Y. Qu, B. Van Houten and N. Farrell, Nucleic Acids Res., 20, 1697 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G., Hu, X., Yu, P. et al. Synthesis and DNA-binding properties of binuclear platinum complexes with two trans-[Pt(NH3)2Cl]+ units bridged by 4,4′-dipyridyl sulfide or selenide. Transition Metal Chemistry 29, 607–612 (2004). https://doi.org/10.1007/s11243-004-1278-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-1278-1

Keywords

Navigation