Skip to main content
Log in

Three Schiff base complexes based on diethylenetriamine: synthesis, structure, DNA binding and cleavage, and in vitro cytotoxicity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Cu(II) and Zn(II) complexes with Schiff bases derived from diethylenetriamine, [Cu(C22H23N5)(H2O)(ClO4)2] (1), [Cu(C14H18N4)(ClO4)](ClO4) (2), and [Zn(C10H17N5Cl)]4[ZnCl4]2·H2O (3), have been synthesized and structurally characterized. The interactions of the complexes with CT-DNA were investigated by electronic absorption, circular dichroism (CD), and fluorescence spectroscopies. All three complexes appear to bind to DNA via groove binding modes. The order of DNA binding strength was 2 > 1 > 3. The complexes proved to be capable of efficient cleavage of pBR322 DNA at micromolar concentrations in the presence of ascorbic acid as a reducing regent. The hydroxyl radical may be the reactive species, and H2O2 may be involved in DNA strand breakage induced by these complexes. Furthermore, in vitro cytotoxicities of the complexes against four human carcinoma cell lines (HepG2, MGC-803, EC9706, and MCF-7) were screened by MTT assays. Complex 2 shows potent activity against HepG2 and MGC-803 cell lines; for all four cell lines, the activities of the complexes follow the order: 2 > 1 > 3. Hence, the different anticancer activities of the complexes may be correlated with their DNA binding abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Coord Chem Rev 284:329–350

    Article  CAS  Google Scholar 

  2. Wilson JJ, Lippard SJ (2014) Chem Rev 114(8):4470–4495

    Article  CAS  PubMed  Google Scholar 

  3. Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP (2008) Cancer Treat Rev 34(4):368–377

    Article  CAS  PubMed  Google Scholar 

  4. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Chem Rev 114(1):815–862

    Article  CAS  PubMed  Google Scholar 

  5. Vieira AP, Wegermann CA, Da Costa Ferreira AM (2018) New J Chem 42(15):13169–13179

    Article  CAS  Google Scholar 

  6. Dìez M, Cerdàn FJ, Arroyo M, Balibrea JL (1989) Cancer 63(4):726–730

    Article  PubMed  Google Scholar 

  7. Nayak SB, Bhat VR, Upadhyay D, Udupa SL (2003) Indian J Physiol Pharmacol 47(1):108–110

    CAS  PubMed  Google Scholar 

  8. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Med Res Rev 30(4):708–749

    CAS  PubMed  Google Scholar 

  9. Erxleben A (2018) Coord Chem Rev 360:92–121

    Article  CAS  Google Scholar 

  10. Hangan AC, Stan RL, Turza A, Oprean LS, Páll E, Gheorghe CS, Sevastre B (2017) Transit Metal Chem 42(2):153–164

    Article  CAS  Google Scholar 

  11. Mardani Z, Kazemshoar DR, Moeini K, Hajabbas FA, Carpenter WC, Slawin AMZ, Woollinsd JD (2018) RSC Adv 8(50):28810–28824

    Article  CAS  Google Scholar 

  12. Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR (2016) J Med Chem 59(10):4965–4984

    Article  CAS  PubMed  Google Scholar 

  13. Gümüş F, Eren G, Açık L, Çelebi A, Öztürk F, Yılmaz Ş, Saǧkan RI, Gür S, Özkul A, Elmalı A, Elerman Y (2009) J Med Chem 52(5):1345–1357

    Article  CAS  PubMed  Google Scholar 

  14. Alpaslan G, Boyacioglu B, Demir N, Tümer Y, Yapar G, Yıldırım N, Yıldız M, Ünver H (2019) J Mol Struct 1180:170–178

    Article  CAS  Google Scholar 

  15. Saghatforoush L, Moeini K, Hosseini YSA, Mardani Z, Hajabbas FA, Jameson HT, Telfer SG, Woollins JD (2018) RSC Adv 8(62):35625–35639

    Article  CAS  Google Scholar 

  16. Zaltariov MF, Hammerstad M, Arabshahi HJ, Jovanović K, Richter KW, Cazacu M, Shova S, Balan M, Andersen NH, Radulović S, Reynisson J, Andersson KK, Arion VB (2017) Inorg Chem 56(6):3532–3549

    Article  CAS  PubMed  Google Scholar 

  17. Zhou XQ, Li Y, Zhang DY, Nie Y, Li ZJ, Gu W, Liu X, Tian JL, Yan SP (2016) Eur J Med Chem 114:244–256

    Article  CAS  PubMed  Google Scholar 

  18. Bai YL, Zhang YW, Xiao JY, Guo HW, Liao XW, Li WJ, Zhang YC (2018) Transit Metal Chem 43(2):171–183

    Article  CAS  Google Scholar 

  19. Kumar P, Gorai S, Santra MK, Mondal B, Manna D (2012) Dalton Trans 41(25):7573–7581

    Article  CAS  PubMed  Google Scholar 

  20. Sheldrick GK (1996) SHELXTL reference manual. Siemens Analytical X-ray Systems Inc., Madison

    Google Scholar 

  21. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26(20):6392–6396

    Article  CAS  PubMed  Google Scholar 

  22. Pasternack RF, Caccam M, Keogh B, Stephenson TA, Williams AP, Gibbs EJ (1991) J Am Chem Soc 113(18):6835–6840

    Article  CAS  Google Scholar 

  23. Boča M, Valko M, Kickelbick G, Ďurı́k M, Linert W (2003) Inorg Chim Acta 349:111–122

    Article  CAS  Google Scholar 

  24. Borge VV, Patil RM (2019) Microchem J 145:456–459

    Article  CAS  Google Scholar 

  25. Emara AAA (2010) Spectrochim Acta A 77(1):117–125

    Article  CAS  Google Scholar 

  26. Shit S, Sasmal A, Dhal P, Rizzoli C, Mitra S (2016) J Mol Struct 1108:475–481

    Article  CAS  Google Scholar 

  27. Mancha MK, Gurumoorthy P, Arul AS, Ramalakshmi N (2017) J Mol Struct 1143:478–486

    Article  CAS  Google Scholar 

  28. Kumar S, Pal Sharma PR, Venugopalan P, Singh GV, Chhibber S, Aree T, Witwicki M, Ferretti V (2018) Inorg Chim Acta 469:288–297

    Article  CAS  Google Scholar 

  29. Hasan MA, Kumari N, Singh K, Singh K, Mishra L (2016) Spectrochim Acta A 152:208–217

    Article  CAS  Google Scholar 

  30. Fu XB, Liu DD, Lin Y, Hu W, Mao ZW, Le XY (2014) Dalton Trans 43(23):8721–8737

    Article  CAS  PubMed  Google Scholar 

  31. Sirajuddin M, Ali S, Badshah A (2013) J Photochem Photobiol B 124:1–19

    Article  CAS  PubMed  Google Scholar 

  32. Liu YX, Mo HW, Lv ZY, Shen F, Zhang CL, Qi YY, Mao ZW, Le XY (2018) Transit Metal Chem 43(3):259–271

    Article  CAS  Google Scholar 

  33. Tjioe L, Meininger A, Joshi T, Spiccia L, Graham B (2011) Inorg Chem 50(10):4327–4339

    Article  CAS  PubMed  Google Scholar 

  34. Protas AV, Popova EA, Mikolaichuk OV, Porozov YB, Mehtiev AR, Ott I, Alekseev GV, Kasyanenko NA, Trifonov RE (2018) Inorg Chim Acta 473:133–144

    Article  CAS  Google Scholar 

  35. Raja DS, Bhuvanesh NSP, Natarajan K (2011) Inorg Chem 50(24):12852–12866

    Article  CAS  PubMed  Google Scholar 

  36. Deng J, Su G, Chen P, Du Y, Gou Y, Liu Y (2018) Inorg Chim Acta 471:194–202

    Article  CAS  Google Scholar 

  37. Douglas K (1996) Transit Metal Chem 21(5):474–480

    Article  CAS  Google Scholar 

  38. Rangasamy L, Sethu R, Mani G, Nattamai SPB, Mallayan P, Anvarbatcha R, Mohamad AA (2015) Dalton Trans 44:10210–10227

    Article  CAS  Google Scholar 

  39. Lian WJ, Wang XT, Xie CZ, Tian H, Song XQ, Pan HT, Qiao X, Xu JY (2016) Dalton Trans 45:9073–9087

    Article  CAS  PubMed  Google Scholar 

  40. Ramakrishnan S, Palaniandavar M (2008) Dalton Trans 29:3866–3878

    Article  CAS  Google Scholar 

  41. Lee WY, Yan YK, Lee PP, Tan SJ, Lim KH (2012) Metallomics 4(2):188–196

    Article  CAS  PubMed  Google Scholar 

  42. Gaetke LM, Chow CK (2003) Toxicology 189(1):147–163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial assistance from Hunan Province Key Research and Development Project of China (2017SK2254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouchun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Yan, J., Yu, W. et al. Three Schiff base complexes based on diethylenetriamine: synthesis, structure, DNA binding and cleavage, and in vitro cytotoxicity. Transit Met Chem 44, 463–474 (2019). https://doi.org/10.1007/s11243-019-00327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00327-1

Navigation