Skip to main content

Advertisement

Log in

Cytotoxic platinum(II) complexes derived from saccharinate and phosphine ligands: synthesis, structures, DNA cleavage, and oxidative stress-induced apoptosis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of the structurally related platinum(II) saccharinate (sac) complexes with alkylphenylphosphines, namely cis-[Pt(sac)2(PPh2Me)2]·DMSO (1), cis-[Pt(sac)2(PPhMe2)2] (2), cis-[Pt(sac)2(PPh2Et)2] (3), and cis-[Pt(sac)2(PPhEt2)2]·2DMSO (4), were synthesized and fully characterized; their structures were determined by X-ray crystallography. All the complexes were investigated for their anticancer potentials on three human cancer cells including A549 (lung), MCF-7 (breast), and HCT116 (colon) in addition to a noncancerous human bronchial epithelial cells (BEAS-2B). Specifically, 1 and 3 showed significant cytotoxic effects against MCF-7 and HCT116 cell lines in comparison to cisplatin, and were considered as the most potent ones in the series. The cytotoxic complexes were found to cleave DNA efficiently. In addition, the binding interactions of the complexes with DNA were confirmed by enzyme inhibition and molecular docking studies. Complexes 1 and 3 were capable of inducing apoptosis and arrested the cell cycle at the DNA synthesis (S) phase in MCF-7 cells. Furthermore, 1 and 3 caused the excessive generation of reactive oxygen species (ROS), leading to mitochondrial dysfunction and double-strand DNA breaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baran EJ, Yilmaz VT (2006) Coord Chem Rev 250:1199–1980

    Article  CAS  Google Scholar 

  2. Ghosh S (2019) Bioorg Chem 88:102925

    Article  CAS  PubMed  Google Scholar 

  3. Alcindor T, Beauger N (2011) Curr Oncol 18:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Pasqua AJ, Goodisman J, Dabrowiak JC (2012) Inorg Chim Acta 389:29–35

    Article  CAS  Google Scholar 

  5. Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127

    Article  CAS  PubMed  Google Scholar 

  6. Ulukaya E, Ari F, Dimas K, Sarimahmut M, Guney E, Sakellaridis N, Yilmaz VT (2011) J Cancer Res Clin Oncol 137:1425–1434

    Article  CAS  PubMed  Google Scholar 

  7. Guney E, Yilmaz VT, Ari F, Buyukgungor O, Ulukaya E (2011) Polyhedron 30:114–122

    Article  CAS  Google Scholar 

  8. Ari F, Aztopal N, Icsel C, Yilmaz VT, Guney E, Buyukgungor O, Ulukaya E (2013) Bioorg Med Chem 21:6427–6434

    Article  CAS  PubMed  Google Scholar 

  9. Ikitimur-Armutak EI, Sonmez K, Akgun-Dar K, Sennazli G, Kapucu A, Yigit F, Yilmaz VT, Ulukaya E (2015) Anticancer Res 35:1491–1497

    CAS  PubMed  Google Scholar 

  10. Ikitimur-Armutak EI, Ulukaya E, Gurel-Gurevin E, Yaylim I, Isbilen-Basok B, Sennazli G, Yuzbasioglu-Ozturk G, Sonmez K, Celik F, Kucukhuseyin O, Korkmaz G, Yilmaz VT, Zeybek SU (2016) In Vivo 30:457–464

    CAS  PubMed  Google Scholar 

  11. Karami K, Alinaghi M, Amirghofran Z, Lipkowskic J, Momtazi-borojeni AA (2018) New J Chem 42:574–586

    Article  CAS  Google Scholar 

  12. Cavicchioli M, Massabni AC, Castellano EE, Sabeh LPB, Costa-Neto CM (2007) Inorg Chim Acta 360:3055–3060

    Article  CAS  Google Scholar 

  13. Al-Jibori SA, Al-Jibori GH, Al-Hayaly LJ, Wagner C, Schmidt H, Timur S, Barlas FB, Subasi E, Ghosh S, Hogarth G (2014) J Inorg Biochem 141:55–57

    Article  CAS  PubMed  Google Scholar 

  14. Bergamini P, Bertolasi V, Marvelli L, Canella A, Mantovani N, Manas S, Romerosa A (2007) Inorg Chem 46:4267–4276

    Article  CAS  PubMed  Google Scholar 

  15. Cutillas N, Martinez A, Yellol GS, Rodrigez V, Zamora A, Pedreno M, Donaire A, Janiak C, Ruiz J (2013) Inorg Chem 52:13529–13535

    Article  CAS  PubMed  Google Scholar 

  16. Albert J, Granell J, Qadir R, Quirante J, Calvis C, Messeguer R, Badia J, Boldama L, Font-Bardia M, Calvet T (2014) Organometallics 33:7284–7292

    Article  CAS  Google Scholar 

  17. Villarreal W, Colina-Vegas L (2015) Rodrigues de Oliveira C, Tenorio JC, Ellena J, Gozzo FC, Cominetti MR, Ferreira AG, Ferreira MAB, Navarro M, Batista AA. Inorg Chem 54:11709–11720

    Article  CAS  PubMed  Google Scholar 

  18. Zivkovic MD, Kljun J, Ilic-Tomic T, Pavic A, Veselinovic A, Monojlovic DD, Nikodinovic-Runic J, Turel I (2018) Inorg Chem Front 5:39–53

    Article  CAS  Google Scholar 

  19. Henderson W, Nicholson BK, McCaffrey LJ (1999) Inorg Chim Acta 285:145–148

    Article  CAS  Google Scholar 

  20. Al-Jibori SA, Al-Nassiry AIA, Hogarth G, Salassa L (2013) Inorg Chim Acta 398:46–53

    Article  CAS  Google Scholar 

  21. Yilmaz VT, Icsel C, Turgut OR, Aygun M, Erkisa M, Turkdemir MH, Ulukaya E (2018) Eur J Med Chem 155:609–622

    Article  CAS  PubMed  Google Scholar 

  22. Icsel C, Yilmaz VT, Aygun M, Cevatemre B, Alper P, Ulukaya E (2018) Dalton Trans 47:11397–11410

    Article  CAS  PubMed  Google Scholar 

  23. Yilmaz VT, Icsel C, Aygun M, Erkisa M, Ulukaya E (2018) Eur J Med Chem 158:534–547

    Article  CAS  PubMed  Google Scholar 

  24. Icsel C, Yilmaz VT, Cevatemre B, Aygun M, Ulukaya E (2019) J Inorg Biochem 195:39–50

    Article  CAS  PubMed  Google Scholar 

  25. Matern E, Pikies J, Fritz G (2000) Z Anorg Allg Chem 626:2136–2142

    Article  CAS  Google Scholar 

  26. Sheldrick GM (2015) Acta Cryst A71:3–8

    Google Scholar 

  27. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  28. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  29. Hall MD, Telma KA, Chang K-E, Lee TD, Madigan JP, Lloyd JR, Goldlust IS, Hoeschele JD, Gottesman MM (2014) Cancer Res 74:3913–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. OECD Method (1995) Partition coefficient (N-octanol/water): shake flask method

  31. Messersehmidt J, Alt F, Tolg G, Angerer J, Schaller KH (1992) Fresenius J Anal Chem 343:391–394

    Article  Google Scholar 

  32. Trott O, Olson AJ (2010) J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho K-C, McLaughlin GM, McPartlin M, Robertson GB (1982) Acta Cryst B38:421–425

    Article  Google Scholar 

  34. Attia WM, Balducci G, Calligaris M (1987) Acta Cryst C43:1053–1055

    CAS  Google Scholar 

  35. Domanska-Babul W, Chojnacki J, Pikies J (2007) Acta Cryst E63:m1956

    Google Scholar 

  36. Domanska-Babul W, Pikies J, Chojnacki J (2007) Acta Cryst E63:m2583

    Google Scholar 

  37. Monk A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Viagro-Wolff A, Gray-goodrich M, Campbell H, Mayo J, Boyd M (1991) J Natl Cancer Inst 83:757–766

    Article  Google Scholar 

  38. Oun R, Moussa YE, Wheate NJ (2018) Dalton Trans 47:6645–6653

    Article  CAS  PubMed  Google Scholar 

  39. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Blood 84:1415–1420

    Article  CAS  PubMed  Google Scholar 

  40. Ormerod MG, Orr RM, Peacock JH (1994) Br J Cancer 69:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galadaria S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Free Radic Biol Med 104:144–164

    Article  CAS  Google Scholar 

  42. Murphy MP (2009) Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  43. Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  44. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Biochem Cell Biol 81:123–129

    Article  CAS  PubMed  Google Scholar 

  45. Turinetto V, Giachino C (2015) Nucleic Acids Res 43:2489–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial support from TUBITAK (project no. 215Z230) is gratefully acknowledged. We thank Prof. Dr. Ismail Ozdemir for collecting the NMR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veysel T. Yilmaz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2019_1736_MOESM1_ESM.pdf

Crystallographic and structure refinement data, FT-IR spectra, NMR spectra (1H, 13C and 31P), ESI-MS spectra, stability data in DMSO and saline, Annexin-V positivity in MCF-7 cells, cell cycle progression of MCF-7 cells, ROS generation in MCF-7 cells, mitochondrial membrane depolarization in MCF-7 cells and formation of DNA double-strand breaks in MCF-7 cells treated with the IC90 doses of 1 (17.4 μM), 3 (4.5 μM) and cisplatin (28.0 μM) for different time intervals. (PDF 899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Icsel, C., Yilmaz, V.T., Cevatemre, B. et al. Cytotoxic platinum(II) complexes derived from saccharinate and phosphine ligands: synthesis, structures, DNA cleavage, and oxidative stress-induced apoptosis. J Biol Inorg Chem 25, 75–87 (2020). https://doi.org/10.1007/s00775-019-01736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01736-4

Keywords

Navigation