Skip to main content

Advertisement

Log in

Biotechnological approaches for the production of hypericin and other important metabolites from the genus Hypericum

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Hypericin, a polycyclic naphthodianthrone and active plant pigment with the molecular formula C30H16O8, is a crucial phytochemical extracted from the dark-colored glands present on the aerial parts of the genus Hypericum. It is biosynthesized through the polyketide pathway by plant-specific type III polyketide synthases (PKSs). In addition to hypericin, the genus Hypericum is rich in various classes of phytochemicals. Alongside other bioactive compounds like hyperforin and flavonoids, hypericin exhibits antidepressant activity. Recently, hypericin has gained increased importance in the research due to its unique properties. Its photodynamic nature makes it an effective natural photosensitizer, extending its use in investigating skin disorders. Moreover, hypericin demonstrates antiviral and antitumoral properties. Despite its effectiveness in treating cancers and neurological disorders, hypericin production faces challenges due to its site-specific nature. Conventional methods struggle to meet the growing demand for hypericin. Biotechnological approaches, including plant tissue culture and bioreactor-based large-scale production, offer promising solutions to address this demand. This review focuses on various plant tissue culture techniques, such as cell and organ culture, and elucidates their biosynthetic pathways. It also discusses hypericin production using elicitation strategies involving biotic and abiotic components, as well as genetic engineering approaches to enhance hypericin yields. Bioreactor-scale production presents significant potential for sustainable hypericin production. Further advancements in understanding and engineering biosynthetic pathways hold promise for unlocking new avenues in hypericin production.

Key points

1. Hypericin is one of the potential anti-cancerous molecules from Hypericum.

2. Cell and organ culture offers potential approach for hypericin production.

3. Elicitation strategies have increased the production of hypericin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The present manuscript is a review article and there is no original data associated. All the literature referred has been represented in the form of tables and figures.

References

  • Afsharzadeh N, Lavi Arab F, Sankian M, Samiei L, Tabasi NS, Afsharzadeh D, Nikkhah K, Mahmoudi M (2021) Comparative assessment of proliferation and immunomodulatory potential of Hypericum perforatum plant and callus extracts on mesenchymal stem cells derived adipose tissue from multiple sclerosis patients. Inflammopharmacology 29:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Khan MS, Ahmad I (2019) Chap. 1 - herbal medicine: current trends and future prospects. In: Ahmad Khan MS, Ahmad I, Chattopadhyay D (eds) New look to Phytomedicine. Academic, pp 3–13

  • Azeez H, Ibrahim K, Pop R, Pamfil D, Hârţa M, Bobiș O (2017) Changes induced by gamma ray irradiation on biomass production and secondary metabolites accumulation in Hypericum Triquetrifolium Turra callus cultures. Ind Crops Prod 108:183–189

    Article  CAS  Google Scholar 

  • Bais HP, Walker TS, McGrew JJ, Vivanco JM (2002) Factors affecting growth of cell suspension cultures of Hypericum perforatum L. (St. John’s wort) and production of hypericin. Vitro Cell Dev Biol Plant 38:58–65

    Article  CAS  Google Scholar 

  • Bálintová M, Bruňáková K, Petijová L, Čellárová E (2019) Targeted metabolomic profiling reveals interspecific variation in the genus Hypericum in response to biotic elicitors. Plant Physiol Biochem 135:348–358

    Article  PubMed  Google Scholar 

  • Barnes J, Anderson LA, Phillipson JD (2001) St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J Pharm Pharmacol 53:583–600

    Article  CAS  PubMed  Google Scholar 

  • Barnes J, Arnason JT, Roufogalis BD (2019) St John’s wort (Hypericum perforatum L.): botanical, chemical, pharmacological and clinical advances. J Pharm Pharmacol 71:1–3

    Article  CAS  PubMed  Google Scholar 

  • Beerhues L (2006) Hyperforin Phytochemistry 67:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Benedi J, Arroyo RC, Romeo, Martin S, Villar AM (2004) Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life Sci 75:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Bertoli A, Giovannini A, Ruffoni B, Guardo AD, Spinelli G, Mazzetti M, Pistelli L (2008) Bioactive constituent production in St. John’s wort in vitro hairy roots. Regenerated plant lines. J Agric Food Chem 56:5078–5082

    Article  CAS  PubMed  Google Scholar 

  • Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol Biochem 39:1075–1081

    Article  CAS  Google Scholar 

  • Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’s wort (Hypericum perforatum L. Hypericaceae/Guttiferae) 14:682–725

    CAS  Google Scholar 

  • Butterweck V, Jürgenliemk G, Nahrstedt A, Winterhoff H (2000) Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Medica. 66:3–6

  • Butterweck V, Schmidt M (2007) St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wien Med Wochenschr 157:356–361

    Article  PubMed  Google Scholar 

  • Cao K, Zhang Y, Yao Q, Peng Y, Pan Q, Jiao Q, Ren K, Sun F, Zhang Q, Guo R, Zhang J (2022) Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. J Ethnopharmacol. 296:115524

  • Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, Diao L, Liu H, Li X, Sun X, Abbas G, Li G (2019) Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Front Pharmacol 10:1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary N, Collignon TE, Tewari D, Bishayee A (2022) Hypericin and its anticancer effects: from mechanism of action to potential therapeutic application. Phytomedicine 105:154356

    Article  CAS  PubMed  Google Scholar 

  • Cirak C, Radušienė J, Kurtarc ES, Marksa M, Ivanauskas L (2020) In vitro plant regeneration and jasmonic acid induced bioactive chemical accumulations in two Hypericum species from Turkey. S Afr J Bot 128:312–318

    Article  CAS  Google Scholar 

  • Conceição LFR, Ferreres F, Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum Hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult 106:279–288

    Article  CAS  Google Scholar 

  • Cui X-H, Chakrabarty D, Lee E-J, Paek K-Y (2010a) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    Article  CAS  PubMed  Google Scholar 

  • Cui X-H, Murthy HN, Wu C-H, Paek K-Y (2010b) Adventitious root suspension cultures of Hypericum perforatum: effect of nitrogen source on production of biomass and secondary metabolites. Vitro Cell Dev Biology - Plant 46:437–444

    Article  CAS  Google Scholar 

  • Cui X-H, Murthy HN, Wu C-H, Paek K-Y (2010c) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult 103:7–14

    Article  CAS  Google Scholar 

  • Cui X-H, Murthy HN, Jin Y-X, Yim Y-H, Kim J-Y, Paek K-Y (2011) Production of adventitious root biomass and secondary metabolites of Hypericum perforatum L. in a balloon type airlift reactor. Bioresour Technol 102:10072–10079

    Article  CAS  PubMed  Google Scholar 

  • Cui X-H, Murthy HN, Paek K-Y (2014a) Production of adventitious root biomass and bioactive compounds from Hypericum perforatum L. through large scale bioreactor cultures. In: Paek K-Y, Murthy HN, Zhong J-J (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer Netherlands, Dordrecht: 251–283

  • Cui X-H, Murthy HN, Paek K-Y (2014b) Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds. Appl Biochem Biotechnol 174:784–792

    Article  CAS  PubMed  Google Scholar 

  • Danova K, Nikolova-Damianova B, Denev R, Dimitrov D (2012) Influence of vitamins on polyphenolic content, morphological development, and stress response in shoot cultures of Hypericum spp. Plant Cell Tissue Organ Cult 110:383–393

    Article  CAS  Google Scholar 

  • Dong X, Zeng Y, Zhang Z, Fu J, You L, He Y, Hao Y, Gu Z, Yu Z, Qu C, Yin X, Ni J, Cruz LJ (2021) Hypericin-mediated photodynamic therapy for the treatment of cancer: a review. J Pharm Pharmacol 73:425–436

    Article  PubMed  Google Scholar 

  • Feyzioğlu B, Demircili ME, Özdemir M, Doğan M, Baykan M, Baysal B (2013) Antibacterial effect of hypericin. Afr J Microbiol Res. 7:979–982

  • Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci 172:1193–1203

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagège D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tissue Organ Cult 89:1–13

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Courtois D, Joseph C (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Cult 113:25–39

    Article  CAS  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Maury S, Delaunay A, Joseph C, Hagège D (2014) Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. ScientificWorldJournal 2014:609649

  • Germ M, Stibilj V, Kreft S, Gaberščik A, Kreft I (2010) Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem 122:471–474

    Article  CAS  Google Scholar 

  • Goel MK, Kukreja AK, Bisht NS (2009) In vitro manipulations in St. John’s wort (Hypericum perforatum L.) for incessant and scale up micropropagation using adventitious roots in liquid medium and assessment of clonal fidelity using RAPD analysis. Plant Cell Tissue Organ Cult 96:1–9

    Article  Google Scholar 

  • Hamed ZS, Abed RR, Almashhadany MS, Merkhan MM (2022) Effects of Hypericum perforatum on serum lipid vascular systems in mice. Iraqi J Vet Sci 36:525–530

    Article  Google Scholar 

  • Henzelyová J, Čellárová E (2018) Modulation of naphthodianthrone biosynthesis in hairy root-derived Hypericum Tomentosum regenerants. Acta Physiol Plant 40:82

    Article  Google Scholar 

  • Hou W, Shakya P, Franklin G (2016) A perspective on Hypericum perforatum Genetic Transformation. Front Plant Sci 7:879

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Dias ACP (2019) Transgenic expression of Hyp-1 gene from Hypericum perforatum L. alters expression of defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens. Planta 251:13

    Article  PubMed  Google Scholar 

  • Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Franklin G, Dias ACP (2020) Overexpression of polygalacturonase-inhibiting protein (PGIP) gene from Hypericum perforatum alters expression of multiple defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens in tobacco. J Plant Physiol 253:153268

    Article  CAS  PubMed  Google Scholar 

  • Huang LF, Zeng-Hui WA, Shi-Lin CH (2014) Hypericin: chemical synthesis and biosynthesis. Chin J Nat Med. 12:81–88

  • Karakas O, Toker Z, Tilkat E, Ozen HC, Onay A (2009) Effects of different concentrations of benzylaminopurine on shoot regeneration and hypericin content in Hypericum Triquetrifolium Turra. Nat Prod Res 23:1459–1465

    Article  CAS  PubMed  Google Scholar 

  • Karakaş Ö, Özen HÇ, Onay A (2015) Determination of hypericin content in callus and cell suspension cultures of Hypericum Triquetrifolium Turra. Adv Zool Bot 3:184–189

    Google Scholar 

  • Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karppinen K, Hohtola A, Gyorgy Z, Neubauer P, Tolonen A, Jalonen J (2004) Comparison of growth and secondary metabolite accumulation in cultures of compact callus aggregates and shoots of Hypericum perforatum L. in shake flasks and in a bubble column bioreactor. In: V International Symposium on In Vitro Culture and Horticultural Breeding 725. pp 605–612

  • Kartnig T, Göbel I, Heydel B (1996) Production of hypericin, pseudohypericin and flavonoids in cell cultures of various Hypericum species and their chemotypes. Planta Med 62:51–53

    Article  CAS  PubMed  Google Scholar 

  • Khanam MN, Anis M, Javed SB, Mottaghipisheh J, Csupor D (2022) Adventitious root culture—an alternative strategy for secondary metabolite production: a review. Agronomy 12:1178

    Article  CAS  Google Scholar 

  • Khlifa HD, Klimek-Chodacka M, Baranski R, Combik M, Taha HS (2020) Agrobacterium rhizogenes-mediated transformation of Hypericum Sinaicum L. for the development of hairy roots containing hypericin. Braz J Pharm Sci 56:e18327

    Article  CAS  Google Scholar 

  • Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A, Vardapetyan H (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348

    Article  CAS  PubMed  Google Scholar 

  • Kirakosyan A, Gibson DM, Sirvent T (2004a) A comparative study of Hypericum perforatum plants as sources of hypericins and hyperforins. J Herbs Spices Med Plan 10:73–88

  • Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004b) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81

    Article  CAS  PubMed  Google Scholar 

  • Komarovská H, Giovannini A, Kosutha J, Cellárovia E (2009) Agrobacterium rhizogenes-mediated transformation of Hypericum Tomentosum L and Hypericum tetrapterum fries. Z Naturforsch C 64:864–868

    Article  PubMed  Google Scholar 

  • Koperdáková J, Komarovská H, Košuth J, Giovannini A, Čellárová E (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta Physiol Plant 31:351–358

    Article  Google Scholar 

  • Kornfeld A, Kaufman PB, Lu CR, Gibson DM, Bolling SF, Warber SL, Chang SC, Kirakosyan A (2007) The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland structure. Plant Physiol Biochem 45:24–32

    Article  CAS  PubMed  Google Scholar 

  • Košuth J, Koperdáková J, Tolonen A, Hohtola A, Cellárová E (2003) The content of hypericins and phloroglucinols in Hypericum perforatum L. seedlings at early stage of development. Plant Scie 165:515–521

    Article  Google Scholar 

  • Košuth J, Katkovčinová Z, Olexová P, Čellárová E (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217

    Article  PubMed  Google Scholar 

  • Košuth J, Smelcerovic A, Borsch T, Zuehlke S, Karppinen K, Spiteller M, Hohtola A, Čellárová E (2010) The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Func Plant Biol 38:35–43

    Article  Google Scholar 

  • Kubin A, Wierrani F, Burner U, Alth G, Grunberger W (2005) Hypericin-the facts about a controversial agent. Curr pharm des 11:233–253

    Article  CAS  PubMed  Google Scholar 

  • Liang JL, Cha HC, Lee SH, Son J-K, Chang HW, Eom J-E, Kwon Y, Jahng Y (2012) A facile synthesis of emodin derivatives, emodin carbaldehyde, citreorosein, and their 10-deoxygenated derivatives and their inhibitory activities on µ-calpain. Arch Pharm Res 35:447–454

    Article  CAS  PubMed  Google Scholar 

  • Liu X-N, Zhang X-Q, Sun J-S (2007) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum Sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214

    Article  CAS  Google Scholar 

  • Lu YH, Du CB, Liu JW, Hong W, Wei DZ (2004) Neuroprotective effects of Hypericum perforatum on trauma induced by hydrogen peroxide in PC12 cells. Am J Chi Med 32:397–405

    Article  CAS  Google Scholar 

  • Mañero FJG, Algar E, Martín Gómez MS, Saco Sierra MD, Solano BR (2012) Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharm Biol 50:1201–1209

    Article  PubMed  Google Scholar 

  • Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M (2020) Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 284:197989

    Article  CAS  PubMed  Google Scholar 

  • Matić IZ, Ergün S, Đorđić Crnogorac M, Misir S, Aliyazicioğlu Y, Damjanović A, Džudžević-Čančar H, Stanojković T, Konanç K, Petrović N (2021) Cytotoxic activities of Hypericum perforatum L. extracts against 2D and 3D cancer cell models. Cytotech 73:373–389

    Article  Google Scholar 

  • Menegazzi M, Masiello P, Novelli M (2020) Anti-tumor activity of Hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics. Antioxidants 10:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Montazeri M, Azadbakht M, Najafi Zarrini H, NematZadeh G, Pakdin Parizi A, Davoodi A (2018) Hairy root cultures of Hypericum perforatum L.; a promising method for the high scale production of hypericin. J Med Plants 17:55–67

    Google Scholar 

  • Montazeri M, Pakdin-Parizi A, Najafi-Zarrini H, Azadbakht M, Nematzadeh G, Gholami Z (2019) A comparative analysis of the hairy root induction methods in Hypericum perforatum. J Plant Mol Breed 7:67–76

    Google Scholar 

  • Motallebnejad M, Moghadamnia A, Talei M (2008) The efficacy of Hypericum perforatum extract on recurrent aphthous ulcers. J Med Sci 8(1):39–43

  • Mullaicharam AR, Halligudi N (2019) St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. Int J Res Phytochem Pharm Sci 1:5–11

    Google Scholar 

  • Murch SJ, Saxena PK (2006) St. John’s wort (Hypericum perforatum L.): challenges and strategies for production of chemically-consistent plants. Canad J Plant Sci 86:765–771

    Article  CAS  Google Scholar 

  • Murthy HN, Lee E-J, Paek K-Y (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  • Muruganandam AV, Bhattacharya SK, Ghosal S (2001) Antidepressant activity of hyperforin conjugates of the St. John’s wort, Hypericum perforatum Linn.: an experimental study. Indian J Exp Biol 39:1302–1304

    CAS  PubMed  Google Scholar 

  • Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s wart. J Nat Prod 73:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Naik PM, Al-Khayri JM (2016) Abiotic and biotic elicitors-role in secondary metabolites production through in vitro culture of medicinal plants. Abiotic and biotic stress in plants—recent advances and future perspectives, vol 17. InTech, Rijeka, pp 247–277

    Google Scholar 

  • Nigutová K, Kusari S, Sezgin S, Petijová L, Henzelyová J, Bálintová M, Spiteller M, Čellárová E (2019) Chemometric evaluation of hypericin and related phytochemicals in 17 in vitro cultured Hypericum species, hairy root cultures and hairy root-derived transgenic plants. J Pharm Pharmacol 71:46–57

    Article  PubMed  Google Scholar 

  • Nwozo OS, Effiong EM, Aja PM, Awuchi CG (2023) Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. Int J Food Prop 26:359–388

    Article  CAS  Google Scholar 

  • Oluk EA, Orhan S, Karakas Ö, Çakir A, Gönüz A (2010) High efficiency indirect shoot regeneration and hypericin content in embryogenic callus of Hypericum Triquetrifolium Turra. Afr J Biotechnol 9:2229–2233

    CAS  Google Scholar 

  • Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum Cv. Topas. Plant Sci 165:977–982

    Article  CAS  Google Scholar 

  • Patocka J (2003) The chemistry, pharmacology, and toxicology of the biologically active constituents of the herb Hypericum perforatum L. J Appl Biomed 1:61–70

    Article  CAS  Google Scholar 

  • Pavlík M, Vacek J, Klejdus B, Kuban V (2007) Hypericin and hyperforin production in St. John’s wort in vitro culture: influence of saccharose, polyethylene glycol, methyl jasmonate, and Agrobacterium tumefaciens. J Agric Food Chem 55:6147–6153

    Article  PubMed  Google Scholar 

  • Pu XY, Jian-Ping L, Tao X, Ruo-Feng S, Xue-Hong W, Lan-Ying H, Yu L, Yan-Mei X (2008) Study on activity in vitro of hypericin against highly pathogenic PRRSV. J Chin Vet Med. 38:810–815

  • Rainha N, Lima E, Baptista J, Fernandes-Ferreira M (2013) Content of hypericins from plants and in vitro shoots of Hypericum Undulatum Schousb. Ex Willd. Nat Prod Res 27:869–879

    Article  CAS  PubMed  Google Scholar 

  • Roscetti G, Franzese O, Comandini A, Bonmassar E (2004) Cytotoxic activity of Hypericum perforatum L. on K562 erythroleukemic cells: differential effects between methanolic extract and hypericin. Phytother Res 18:66–72

    Article  CAS  PubMed  Google Scholar 

  • Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharm 131:511–521

    Article  CAS  Google Scholar 

  • Santarém ER, Astarita LV (2003) Multiple shoot formation in Hypericum perforatum L.and hypericin production. Braz J Plant Physiol 15:43–47

    Article  Google Scholar 

  • Savio LE, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant cell Tiss Org Cult 108:465–472

    Article  CAS  Google Scholar 

  • Shafaei M, Ebrahimi M, Khosrowchahli M, Majidi Heravan E, Azizinezhad R (2024) Establishing a simple selection method of high hypericin-producing adventitious root lines from leaf explants of Hypericum perforatum var. Topaz. J Hort Sci Biotechnol 99:75–85

    Article  CAS  Google Scholar 

  • Shakya P, Marslin G, Siram K, Beerhues L, Franklin G (2019) Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J Pharm Pharmacol 71:70–82

    Article  CAS  PubMed  Google Scholar 

  • Sharafi E, Khayam Nekoei SM, Fotokian MH, Davoodi D, Mirzaei HH, Hasanloo T (2013) Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L). J Med Plants Byprod 2:177–184

    Google Scholar 

  • Silva B, Oliveira PJ, Dias A, Malva JO (2008) Quercetin, kaempferol and biapigenin from Hypericum perforatum are neuroprotective against excitotoxic insults. Neurotox res 13:265–279

    Article  CAS  PubMed  Google Scholar 

  • Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    Article  CAS  Google Scholar 

  • Sobhani A, Khanahmadi M, Jalali A, Moradi K, Noormohammadi N, Ebrahimi M (2021) Development of a low-cost disposable bioreactor for pilot scale production of Hypericum perforatum L. adventitious roots. Ind Crops Prod 160:113096

    Article  CAS  Google Scholar 

  • Sobhani Najafabadi A, Khanahmadi M, Ebrahimi M, Moradi K, Behroozi P, Noormohammadi N (2019) Effect of different quality of light on growth and production of secondary metabolites in adventitious root cultivation of Hypericum perforatum. Plant Signal Behav 14:1640561

    Article  PubMed  PubMed Central  Google Scholar 

  • Sooriamuthu S, Varghese RJ, Bayyapureddy A, John SS, Narayanan R (2013) Light-induced production of antidepressant compounds in etiolated shoot cultures of Hypericum hookerianum Wight & Arn.(Hypericaceae). Plant Cell Tiss Org Cult 115:169–178

    Article  CAS  Google Scholar 

  • Southwell IA, Bourke CA (2001) Seasonal variation in hypericin content of Hypericum perforatum L.(St. John’s wort). Phytochem 56:437–441

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava AK (2008) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol. https://doi.org/10.1080/07388550601173918

    Article  Google Scholar 

  • Tavakoli F, Rafieiolhossaini M, Ravash R, Ebrahimi M (2020) Subject: UV-B radiation and low temperature promoted hypericin biosynthesis in adventitious root culture of Hypericum perforatum. Plant Signal Behav 15:1764184

    Article  PubMed  PubMed Central  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Pavokovic D, Gadzovska Simic S (2014) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta Physiol Plant 36:2555–2569

    Article  CAS  Google Scholar 

  • Tusevski O, Stanoeva JP, Markoska E, Brndevska N, Stefova M, Gadzovska Simic S (2016) Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tiss Org Cult 125:309–319

    Article  CAS  Google Scholar 

  • Tusevski O, Vinterhalter B, Krstić Milošević D, Soković M, Ćirić A, Vinterhalter D, Zdravković Korać S, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2017) Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult 128:589–605

    Article  CAS  Google Scholar 

  • Vardapetyan HR, Oganesyan AA, Kabasakalyan EE, Tiratsuyan SG (2006) The influence of some elicitors on growth and morphogenesis of Hypericum perforatum L. callus cultures. Russian J Dev Biology 37:350–353

    Article  CAS  Google Scholar 

  • Varghese RJ, Sooriamuthu S (2013) Differences in hypericin synthesis between experimentally induced seedling shoot cultures of Hypericum hookerianum Wight & Arn. Plant Biotechnol Rep 7:511–518

    Article  Google Scholar 

  • Walker TS, Pal Bais H, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu Z, Jiang H, Liu L, Lan A (2006) Inhibitory effect of monomeric hypericin on human cytomegalovirus in vitro. J Wuhan Univ Med Ed. 27:303–306

  • Wang SY, Chen JH, Liang JP, Cui Y, Shang RF, Wang XH, Hua LY (2009) Studies on the inhibitory effects of hypericin on the adsorption ability of foot-and-mouth virus to host cells in vitro. J Chin Vet Med. 28:5–8

  • Wang J, Qian J, Yao L, Lu Y (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresources Bioprocess 2:5

    Article  Google Scholar 

  • Wu S-Q, Yu X-K, Lian M-L, Park S-Y, Piao X-C (2014) Several factors affecting hypericin production of Hypericum perforatum during adventitious root culture in airlift bioreactors. Acta Physiol Plant 36:975–981

    Article  CAS  Google Scholar 

  • Wu J-J, Zhang J, Xia C-Y, Ding K, Li X-X, Pan X-G, Xu J-K, He J, Zhang W-K (2023) Hypericin: a natural anthraquinone as promising therapeutic agent. Phytomedicine 111:154654

    Article  CAS  PubMed  Google Scholar 

  • Xu M-J, Dong J-F, Zhu M-Y (2005) Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiol 139:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Dong J, Zhang X (2008) Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci China Ser C: Life Sci 51:676–686

    Article  CAS  Google Scholar 

  • Xu M, Yang B, Dong J, Lu D, Jin H, Sun L, Zhu Y, Xu X (2011) Enhancing hypericin production of Hypericum perforatum cell suspension culture by ozone exposure. Biotechnol Prog 27:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Yalçın S, Yalçınkaya S, Ercan F (2021) Determination of potential drug candidate molecules of the Hypericum perforatum for COVID-19 treatment. Curr Pharmacol Rep 7:42–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Yalcınkaya E, Basaran MM, Tunckasık ME, Yazici GN, Elmas Ç, Kocaturk S (2022) Efficiency of hypericum perforatum, povidone iodine, tincture benzoin and tretinoin on wound healing. Food Chem Toxicol 166:113209

    Article  PubMed  Google Scholar 

  • Yamaner O, Erdag B (2013) Effects of sucrose and polyethylene glycol on hypericins content in Hypericum Adenotrichum. Eurasian J Biosci 101–110

  • Yamaner Ö, Erdağ B, Gökbulut C (2013) Stimulation of the production of hypericins in in vitro seedlings of Hypericum adenotrichum by some biotic elicitors. Turk J Bot 37:153–159

    CAS  Google Scholar 

  • Yancheva S, Georgieva L, Badjakov I, Dincheva I, Georgieva M, Georgiev V, Kondakova V (2019) Application of bioreactor technology in plant propagation and secondary metabolite production. J Cent Eur Agric 20:321–340

    Article  Google Scholar 

  • Yue W, Ming Q-L, Lin B, Rahman K, Zheng C-J, Han T, Qin L-P (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36:215–232

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Ji Y, Zhang X, Kennelly EJ, Long C (2020) Ethnopharmacology of Hypericum species in China: a comprehensive review on ethnobotany, phytochemistry and pharmacology. J Ethnopharm. 254:112686

  • Zdunek K, Alfermann A (1992) Initiation of shoot organ cultures of Hypericum perforatum and formation of hypericin derivatives. Planta Med 58:621–622

    Article  Google Scholar 

  • Zhang J, Gao L, Hu J, Wang C, Hagedoorn P-L, Li N, Zhou X (2022) Hypericin: source, determination, separation, and properties. Sep Purif Rev 51:1–10

    Article  Google Scholar 

  • Zobayed SS, Saxena PK (2004) Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. Vitro Cell Dev Biol Plant 40:108–114

    Article  CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum L. Cv ‘New Stem’) grown in bioreactors. Plant Cell Tissue Organ Cult 75:143–149

    Article  CAS  Google Scholar 

  • Zobayed SM, Afreen F, Goto E, Kozai T (2006) Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No. GRANT5957].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—(J.M.A.-K.), (P.N.).; methodology— (W.N.S); resources— (W.N.S), (A.R.V),; writing—original draft preparation (W.N.S), (A.R.V).; writing—review and editing - (M.Q.A), (W.F.S).; supervision—(J.M.A.-K.), (P.N.).; funding acquisition, J.M.A.-K. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jameel M. Al-Khayri or Praveen Nagella.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Jameel M Al-Khayri declares that he has no conflict of interest. Wudali N. Sudheer declares that he has no conflict of interest. Amaranatha Reddy Vennapusa declares that he has no conflict of interest. Praveen Nagella declares that he has no conflict of interest. Wael Fathi Shehata declares that he has no conflict of interest. Muneera Q. Al-Mssallem declares that she has no conflict of interest.

Additional information

Communicated by Christophe Hano.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khayri, J.M., Narasimha, S.W., Vennapusa, A.R. et al. Biotechnological approaches for the production of hypericin and other important metabolites from the genus Hypericum. Plant Cell Tiss Organ Cult 156, 100 (2024). https://doi.org/10.1007/s11240-024-02723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11240-024-02723-7

Keywords

Navigation