Skip to main content

Advertisement

Log in

Indirect organogenesis and in vitro bulb formation of Pancratium maritimum

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Sea daffodil (Pancratium maritimum L.), which belongs to the Amaryllidaceae family, grows in sandy areas along coastal regions and its population is at risk due to the exploitation of its natural resources for medicinal purposes, tourism, and urbanization. Micropropagation is employed to conserve and sustain endangered plant species like P. maritimum. In this investigation, different types of explants (leaf, root, and mature zygotic embryos) from P. maritimum were cultured on Murashige-Skoog (MS) medium supplemented with 2,4-Dichlorophenoxyacetic acid (2,4-D) (1, 2, 4 mg l−1) and 6-Benzyladenine (BA) (0 and 1 mg l−1) for callus induction. The callus formation rate, callus growth rate, embryogenic callus rate, and callus type were evaluated. The induced calli were further tested for shoot formation on MS medium supplemented with 2 mg l−1 BA and 0.2 and 0.5 mg l−1 2,4-D. The results showed that the highest callus induction was achieved using zygotic embryo explants and the medium containing both 2,4-D and BA. Successful shoot formation from callus was determined using both MS media supplemented with 2 mg l−1 BA and 0.5 or 0.2 mg l−1 2,4-D, with a success rate of 90%. To induce in vitro bulb formation of P. maritimum plantlets, MS medium containing varying concentrations of sucrose (20, 40, and 80 g l−1), BA (0, 1, and 2 mg l−1), and 2,4-D (0, 0.1, and 0.2 mg l−1) was utilized. The bulb formation rate of P. maritimum was successful in all growth media, ranging from 60 to 82%. The diameter of the bulb was found to increase with higher sucrose concentration (80 g l−1) in the growth medium. The impact of plant growth regulators on bulb weight was more pronounced in nutrient medium containing low sucrose concentration (20 g l−1). Efficient protocols for embryogenic callus induction, organogenesis, regeneration, bulb formation, and acclimatization were developed for P. maritimum, providing valuable insights for future studies.

Key message

Pancratium maritimum is an endangered plant with medicinal and decorative value. We have successfully developed a comprehensive protocol for its micropropagation, including callus induction, regeneration, bulb formation, and acclimatization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MS:

Murashige Skoog

BA:

6-Benzyladenine

BAP:

6-Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic

NAA:

Napthalene acetic acid

PGRs:

Plant growth regulators

References

  • Alexopoulos AA, Mavrommati E, Kartsonas E, Petropoulos SA (2022) Effect of temperature and sucrose on in vitro seed germination and bulblet production of Pancratium maritimum L. Agronomy 12(11):2786. https://doi.org/10.3390/agronomy12112786

    Article  CAS  Google Scholar 

  • Balestri E, Cinelli F (2004) Germination and early-seedling establishment capacity of Pancratium maritimum L (Amaryllidaceae) on coastal dunes in the north-western Mediterranean. J Coast Res 20(3):761–770

    Article  Google Scholar 

  • Berkov S, Evstatieva L, Popov S (2004) Alkaloids in bulgarian Pancratium maritimum L. Zeitschrift Für Naturforschung C 59(1–2):65–69. https://doi.org/10.1515/znc-2004-1-214

    Article  CAS  Google Scholar 

  • Berkov S, Pavlov A, Georgiev V, Bastida J, Burrus M, Ilieva M, Codina C (2009) Alkaloid synthesis and accumulation in Leucojum aestivum in vitro cultures. Nat Prod Commun 4(3):1934578X0900400328

    Google Scholar 

  • Berkov S, Pavlov A, Georgiev V, Weber J, Bley T, Viladomat F, Bastida J, Codina C (2010) Changes in apolar metabolites during in vitro organogenesis of Pancratium maritimum. Plant Physiol Biochem 48(10–11):827–835. https://doi.org/10.1016/j.plaphy.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  • Bogdanova Y, Pandova B, Yanev S, Stanilova M (2009) Biosynthesis of lycorine by in vitro cultures of Pancratium maritimum L.(Amaryllidaceae). Biotechnol Biotechnol Equip 23(sup1):919–922. https://doi.org/10.1080/13102818.2009.10818572

    Article  Google Scholar 

  • Bozkurt B, Kaya GI, Somer NU (2019) Chemical composition and enzyme inhibitory activities of Turkish Pancratium maritimum bulbs. Nat Prod Commun 14(10):1934578X1987290. https://doi.org/10.1177/1934578X1987290

    Article  Google Scholar 

  • Carfagna S, Salbitani G, Innangi M, Menale B, De Castro O, Di Martino C, Crawford TW Jr (2021) Simultaneous biochemical and physiological responses of the roots and leaves of Pancratium maritimum (Amaryllidaceae) to mild salt stress. Plants (basel) 10(2):345. https://doi.org/10.3390/plants10020345

    Article  CAS  PubMed  Google Scholar 

  • Cimen B (2020) Efficient protoplast isolation from ovule-derived embryogenic callus in Citrus volkameriana. Turk J Agric for 44(6):567–576

    Article  CAS  Google Scholar 

  • Demir S, Çelikel FG (2020) Research and conservation studies on sea daffodil (Pancratium maritimum). Black Sea J Eng Sci 3(3):103–108. https://doi.org/10.34248/bsengineering.691402

    Article  Google Scholar 

  • Demir Z, Müderrisoğlu H, Aksoy N, Aydın Ş, Uzun S, Özkara H (2010) Effects of second housing and recreational use on Pancratium maritimum L population in western Black Sea region of Turkey. J Food Agric Environ 8(2):8–9

    Google Scholar 

  • Dragassaki M, Economou A & Vlahos J (2003) Bulblet formation in vitro and plantlet survival extra vitrum in Pancratium maritimum L. In: I International Symposium on acclimatization and establishment of micropropagated plants 616, p 347–352

  • Ferdausi A, Chang X, Hall A, Jones M (2020) Galanthamine production in tissue culture and metabolomic study on Amaryllidaceae alkaloids in Narcissus pseudonarcissus cv. Carlton. Ind Crops Prod 144:112058

    Article  CAS  Google Scholar 

  • Georgiev V, Ivanov I, Berkov S, Pavlov A (2010) Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33(3):927–933. https://doi.org/10.1007/s11738-010-0622-7

    Article  CAS  Google Scholar 

  • Georgiev V, Ivanov I, Pavlov A (2020) Recent progress in Amaryllidaceae biotechnology. Molecules 25(20):4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassi F, Cazzaniga E, Minuto L, Peccenini S, Barberis G, Basso B (2005) Evaluation of biodiversity and conservation strategies in Pancratium maritimum L. for the NorthernTyrrhenian Sea. Biodivers Conserv 14(9):2159–2169. https://doi.org/10.1007/s10531-004-4666-0

    Article  Google Scholar 

  • Grogg D, Rohner M, Yates S, Manzanares C, Bull SE, Dalton S, Bosch M, Studer B, Broggini GAL (2022) Callus induction from diverse explants and genotypes enables robust transformation of perennial ryegrass (Lolium perenne L.). Plants 11(15):2054. https://doi.org/10.3390/plants11152054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gümüş C (2015) A review of researches on sea daffodil (Pancratium maritimum L.) plant. Derim 32(1):89–105. https://doi.org/10.16882/derim.2015.37355

    Article  Google Scholar 

  • Gümüş C, Ellialtıoğlu Ş (2006) Kum zambağı (Pancratium maritimum)’nın doku kültürü ile çoğaltılma olanağı üzerinde bir çalışma. III Ulusal Süs Bitkileri Kongresi 8(10):435–441

    Google Scholar 

  • Huang H, Wei Y, Zhai Y, Ouyang K, Chen X, Bai L (2020) High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia cadamba). Sci Rep 10(1):4558. https://doi.org/10.1038/s41598-020-61612-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz E, Çelikel F (2013) Türkiye kıyılarında doğal yayılış gösteren kum zambağının korunması ve kültüre alınması üzerine yapılan araştırmalar V. Süs Bitkileri Kongresi 6(9):855–859

    Google Scholar 

  • Maślanka M, Bach A (2014) Induction of bulb organogenesis in in vitro cultures of tarda tulip (Tulipa tarda Stapf.) from seed-derived explants. Vitro Cell Dev Biol Plant 50:712–721. https://doi.org/10.1007/s11627-014-9641-1

    Article  CAS  PubMed  Google Scholar 

  • Maślanka M, Mazur J, Kapczyńska A (2022) In Vitro Organogenesis of Critically Endangered Lachenalia viridiflora. Agronomy 12(2):475. https://doi.org/10.3390/agronomy12020475

    Article  CAS  Google Scholar 

  • Medrano M, Guitián P, Guitián J (1999) Breeding system and temporal variation in fecundity of Pancratium maritimum L. (Amaryllidaceae): reproductive ecology of Pancratium maritimum. Flora 194(1):13–19

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nesi B, Trinchello D, Lazzereschi S, Ruffoni B, Grassotti A (2009) Micropropagation of Pancratium maritimum from twin-and tri-scales. Italus Hortus 16(2):136–138

    Google Scholar 

  • Nikopoulos D, Alexopoulos AA (2008) In vitro propagation of an endangered medicinal plant: Pancratium maritimum L. J Food Agric Environ 6(2):393–398

    CAS  Google Scholar 

  • Panayotova LG, Ivanova TA, Bogdanova YY, Gussev CV, Stanilova MI, Bosseva YZ, Stoeva TD (2008) In vitro cultivation of plant species from sandy dunes along the Bulgarian Black Sea Coast. Phytologia Balcanica 14(1):119–123

    Google Scholar 

  • Pouris J, Rhizopoulou S (2018) On Pancratium maritimum (sea daffodil, sea lily, sand lily). Hortic Int J 2(3):116–118. https://doi.org/10.15406/hij.2018.02.00037

    Article  Google Scholar 

  • Ptak A, El Tahchy A, Dupire F, Boisbrun M, Henry M, Chapleur Y, Mos M, Laurain-Mattar D (2009) LCMS and GCMS for the screening of alkaloids in natural and in vitro extracts of Leucojum aestivum. J Nat Prod 72(1):142–147

    Article  CAS  PubMed  Google Scholar 

  • Ptak A, Simlat M, Kwiecień M, Laurain-Mattar D (2013) Leucojum aestivum plants propagated in in vitro bioreactor culture and on solid media containing cytokinins. Eng Life Sci 13(3):261–270. https://doi.org/10.1002/elsc.201200109

    Article  CAS  Google Scholar 

  • Rahimi Khonakdari M, Rezadoost H, Heydari R, Mirjalili MH (2020) Effect of photoperiod and plant growth regulators on in vitro mass bulblet proliferation of Narcissus tazzeta L. (Amaryllidaceae), a potential source of galantamine. Plant Cell Tissue Organ Cult 142(1):187–199. https://doi.org/10.1007/s11240-020-01853-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Nayim Y (2020) Assessment of sand dune ecosystems with Pancratium maritimum, Bartın, Turkey. J Environ Biol 41(2):483–490. https://doi.org/10.22438/jeb/41/2(SI)/JEB-29

    Article  Google Scholar 

  • Sanaa A, Fadhel NB (2010) Genetic diversity in mainland and island populations of the endangered Pancratium maritimum L. (Amaryllidaceae) in Tunisia. Sci Hortic 125(4):740–747. https://doi.org/10.1016/j.scienta.2010.05.014

    Article  CAS  Google Scholar 

  • Selles M, Viladomat F, Bastida J, Codina C (1999) Callus induction, somatic embryogenesis and organogenesis in Narcissus confusus: correlation between the state of differentiation and the content of galanthamine and related alkaloids. Plant Cell Rep 18:646–651

    Article  CAS  Google Scholar 

  • Shwe SS, Leung DW (2020) Plant regeneration from Eucalyptus bosistoana callus culture. Vitro Cell Dev Biol Plant 56:718–725

    Article  CAS  Google Scholar 

  • Sirin U, Kanmaz E (2017) In vitro propagation of sea daffodil (Pancratium maritimum L.) using seedling explants. Fresenius Environ Bull 25:7710

    Google Scholar 

  • Subramaniam S, Sundarasekar J, Sahgal G, Murugaiyah V (2014) Comparative analysis of lycorine in wild plant and callus culture samples of Hymenocallis littoralis by HPLC-UV method. Sci World J 2014:408306. https://doi.org/10.1155/2014/408306

    Article  Google Scholar 

  • Sultana J, Sutlana N, Siddique M, Islam A, Hossain M, Hossain T (2010) In vitro bulb production in Hippeastrum (Hippeastrum hybridum). J Cent Eur Agric 11(4):469–474

    Article  Google Scholar 

  • Syeed R, Mujib A, Malik MQ, Mamgain J, Ejaz B, Gulzar B, Zafar N (2021) Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry. Mol Biol Rep 48:513–526

    Article  CAS  PubMed  Google Scholar 

  • Tarakemeh A, Azizi M, Rowshan V, Salehi H, Spina R, Dupire F, Arouie H, Laurain-Mattar D (2019) Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. tazetta. J Pharm Biomed Anal 172:230–237

    Article  CAS  PubMed  Google Scholar 

  • Tayoub G, Al-Odat M, Amer A, Aljapawe A, Ekhtiar A (2018) Antiproliferative effects of Pancratium maritimum extracts on normal and cancerous cells. Iran J Med Sci 43(1):52

    PubMed  PubMed Central  Google Scholar 

  • Ulus A, Seyidoğlu N (2006) Propagation of some natural geophytes with tissue culture. J Fac for Istanbul Univ 56(1):71–80

    Google Scholar 

  • Yasemin S, Köksal N, Büyükalaca S (2018) Effects of disinfection conditions and culture media on in vitro germination of sea daffodil (Pancratium maritimum). J Biol Environ Sci 34(12):13–22

    Google Scholar 

  • Youssef DTA, Shaala LA, Altyar AE (2022) Cytotoxic phenylpropanoid derivatives and alkaloids from the flowers of Pancratium maritimum L. Plants (basel) 11(4):476. https://doi.org/10.3390/plants11040476

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Qin W, Li Y, Zhang C, Wang Y, Yang Z, Ge X, Li F (2019) Red light promotes cotton embryogenic callus formation by influencing endogenous hormones, polyamines and antioxidative enzyme activities. Plant Growth Regul 87(2):187–199. https://doi.org/10.1007/s10725-018-0461-x

    Article  CAS  Google Scholar 

  • Zahreddine H, Clubbe C, Baalbaki R, Ghalayini A, Talhouk SN (2004) Status of native species in threatened Mediterranean habitats: the case of Pancratium maritimum L. (sea daffodil) in Lebanon. Biol Conserv 120(1):11–18. https://doi.org/10.1016/j.biocon.2004.01.021

    Article  Google Scholar 

Download references

Acknowledgements

Data presented in the study were obtained from the MSc thesis of Sara Yasemin (corresponding author). Special thanks are due to the Çukurova University, Scientific Research Projects Coordinating Office (Project No: FBA-2015-4083) for supporting the present study.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SY, NK and SB contributed to the conception and design of the study. SY wrote the first draft and curated the data. SY conducted the experiments. SY and NK contributed to the manuscript revision. SY performed the statistical analyses. NK supervised, SY and NK read and approved the submitted version.

Corresponding author

Correspondence to Sara Yasemin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M. I. Beruto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasemin, S., Koksal, N. & Buyukalaca, S. Indirect organogenesis and in vitro bulb formation of Pancratium maritimum. Plant Cell Tiss Organ Cult 154, 713–727 (2023). https://doi.org/10.1007/s11240-023-02545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02545-z

Keywords

Navigation