Skip to main content
Log in

Biotechnological interventions in bamboo plants

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Bamboo, a fast growing plant, is a valuable and renewable bioresource with great socioeconomic value. Sustainable production is needed to combat industrial overexploitation by the paper, pulp, and fuel industries, as well as improper resource management that has widened the gap between supply and demand. Biotechnology applications, such as in vitro propagation and tissue culture, offer a range of solutions for improved and controlled growth, resulting in a more effective and reliable production chain. Seed propagation is ineffective for bamboo due to low seed viability, while vegetative propagation is limited to small-scale production. Genetic transformation of bamboo species remains limited, although the bamboo genome is now better understood and genetic improvement is possible. This review discusses protocols for in vitro propagation, in vitro flowering, synthetic seed production, and transgenic techniques used to improve bamboo. In addition, the application of next-generation sequencing technology to bamboo plants will be examined for fundamental processes related to growth and stress regulation, lignin and cellulose biosynthesis, secondary cell wall deposition, and flowering behavior. This review will provide researchers with a comprehensive overview and better understanding of bamboo biotechnology for better utilization and adaptation as a sustainable bioresource.

Key message

Fast-growing bamboo has significant socioeconomic value. Due to industrial overexploitation and inadequate resource management, there is a growing gap between the supply and demand for bamboo. The use of biotechnology can enhance and regulate bamboo growth for environmentally friendly output. For improved use and adaption as a sustainable bioresource, this review offers a thorough overview of bamboo biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available by the corresponding author on reasonable reason request.

References

  • Agnihotri RK, Nandi SK (2009) In vitro shoot cut: a high frequency multiplication and rooting method in the bamboo Dendrocalamus hamiltonii. Biotechnology 8:259–263. https://doi.org/10.3923/biotech.2009.259.263

    Article  Google Scholar 

  • Agnihotri RK, Mishra J, Nandi SK (2009) Improved in vitro shoot multiplication and rooting of Dendrocalamus hamiltonii Nees et Arn. ex Munro: production of genetically uniform plants and field evaluation. Acta Physiol Plant 31:961–967. https://doi.org/10.1007/s11738-009-0311-6

    Article  CAS  Google Scholar 

  • Ahmad Z, Upadhyay A, Ding Y, Emamverdian A, Shahzad A (2021) Bamboo: origin, habitat, distributions and global prospective. In: Ahmad Z, Ding Y, Shahzad A (eds) Biotechnological advances in bamboo. Springer, Singapore

    Chapter  Google Scholar 

  • Alexander MP, Rao TC (1968) In vitro culture of bamboo embryos. Curr Sci 37:415

    Google Scholar 

  • Ali AH, Nirmala C, Sharma ML (2009) Control of in vitro contamination in bamboos. Plant Cell Biotechnol Mol Biol 10:119–124

    Google Scholar 

  • Amin M, Mujeeb A (2019) Callus induction and synthetic seed development in Draceana sanderiana Sanderex Mast: Lucky Bamboo. Biotechnol J Int 23:1–8

    Article  Google Scholar 

  • Amoo SO, Aremu AO (2012) The effects of plant growth regulators and media additives on in vitro regeneration of crops. Afr J Biot 11(24):6377–6384

    Google Scholar 

  • Anand M, Brar J, Sood A (2013) In vitro propagation of an edible bamboo (Bambusa bambos) and assessment of clonal fidelity through molecular markers. J Med Bioeng 2(4):1–5

    Google Scholar 

  • Arshad SM, Kumar A, Bhatnagar SK (2005) Micropropagation of Bambusa wamin through proliferation of mature nodal explants. J Biol Res 3:59–66

    CAS  Google Scholar 

  • Arya S, Rana PK, Sharma R, Arya ID (2006) Tissue culture technology for rapid multiplication of Dendrocalamus giganteus Munro. Indian for 3:345–357

    Google Scholar 

  • Arya S, Satsangi R, Arya ID (2008) Large scale production of edible bamboo Dendrocalamus asper through somatic embryogenesis. J Am Bamboo Soc 21:13–23

    Google Scholar 

  • Bag N, Chandra S, Palni LMS, Nandi SK (2000) Micropropagation of Dev-ringal [Thamnocalamus spathiflorus (Trin.) Munro] - a temperate bamboo, and comparison between in vitro propagated plants and seedlings. Plant Sci 156:125–135. https://doi.org/10.1016/S0168-9452(00)00212-0

    Article  CAS  PubMed  Google Scholar 

  • Bag N, Palni LMS, Chandra S, Nandi SK (2012) Somatic embryogenesis in ‘Maggar’ bamboo (Dendrocalamus hamiltonii) and field performance of regenerated plants. Curr Sci 102:1279–1287

    Google Scholar 

  • Banerjee M, Gantait S, Pramanik BR (2011) A two-step method for accelerated mass propagation of Dendrocalamus asper and their evaluation in field. Physiol Mol Biol Plants 17:387–393. https://doi.org/10.1007/s12298-011-0088-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155. https://doi.org/10.1105/tpc.5.10.1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borpuzari PP, Bisht NS (2019) Enhanced rhizome induction and fast regeneration protocol in liquid culture of Dendrocalamus longispathus Kurz: a single step culture. Trop Plant Biol 6:18–23. https://doi.org/10.22271/tpr.2019.v6.i1.004

    Article  Google Scholar 

  • Bystriakova N, Kapos V, Lysenko I, Stapleton C (2003) Distribution and conservation status of forest bamboo biodiversity in the Asia Pacific region. Biodivers Conserv 12:1833–1841. https://doi.org/10.1023/A:1024139813651

    Article  Google Scholar 

  • Bystriakova N, Kapos V, Lysenko I (2004) Bamboo biodiversity. Africa, Madagascar and the Americas (No. 19). UNEP-WCMC/INBAR

  • Cardoso JC, Gerald LTC, Teixeira da Silva JA (2018) Micropropagation in the twenty-first century. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, methods in molecular biology, vol 1815. Humana Press, New York, pp 17–46

    Chapter  Google Scholar 

  • Chambers SM, Heuch JHR, Pirrle A (1991) Micropropagation and in vitro flowering of the bamboo Dendrocalamus hamiltonii Munro. Plant Cell Tissue Organ Cult 27:45–48. https://doi.org/10.1007/BF00048205

    Article  CAS  Google Scholar 

  • Chang WC, Ho CW (1997) Micropropagation of bamboos. In: Bajaj YSP (ed) High-tech and micropropagation V. Springer, Berlin, pp 203–219

    Chapter  Google Scholar 

  • Chang WC, Lan TH (1995) Somatic embryogenesis and plant regeneration from roots of bamboo (Bambusa beecheyana Munro var beecheyana). J Plant Physiol 145:535–538. https://doi.org/10.1016/S0176-1617(11)81784-0

    Article  CAS  Google Scholar 

  • Chaturvedi HC, Sharma M, Sharma AK (1993) In vitro regeneration of Dendrocalamus strictus Nees through nodal segments taken from field-grown culms. Plant Sci 91:97–101. https://doi.org/10.1016/0168-9452(93)90192-3

    Article  CAS  Google Scholar 

  • Chavan NS, Kale SS, Deshmukh VS (2021) Effect of different concentrations of BAP on In vitro shoot multiplication of bamboo. J. Pharm Innov J 10(9):161–166

  • Chen CC, Bates R, Carlson J (2014) Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir (Pseudotsuga menziesii) shoot cultures. F1000research 3:298. https://doi.org/10.12688/f1000research.5919.2

    Article  PubMed  Google Scholar 

  • Chen K, Hu K, Xi F, Wang H, Kohnen MV et al (2021) High-efficient and transient transformation of moso bamboo (Phyllostachys edulis) and ma bamboo (Dendrocalamus latiflorus Munro). J Plant Biol. https://doi.org/10.1007/s12374-020-09294-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu WB, Lin CH, Chang CJ, Hsich MH et al (2006) Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol 170:53–63. https://doi.org/10.1111/j.1469-8137.2005.01638.x

    Article  CAS  PubMed  Google Scholar 

  • Choudhary AK, Kumari P, Kumari S (2022) In vitro propagation of two commercially important bamboo species (Bambusa tudla Roxb. and Dendrocalamus stocksii Munro). Afr J Biotechnol 21:83–94. https://doi.org/10.5897/AJB2021.17437

    Article  Google Scholar 

  • Chu CC (1978) The N6 medium and its application to anther culture of cereal crops. In: Hu H (ed) Proceedings of the symposium on plant tissue culture. Science Press, Beijing, pp 43–50 (in Chinese)

  • Das M, Pal A (2005) In vitro regeneration of Bambusa balcooa Roxb.: factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell Tissue Organ Cult 81:109–112. https://doi.org/10.1007/s11240-004-3017-x

    Article  CAS  Google Scholar 

  • de Pasqualini APA, Schneider GX, de Fraga HP, FF, Biasi L A, Quoirin M, (2019) In vitro establishment of Bambusa oldhamii Munro from field grown matrices and molecular identification of endophytic bacteria. Pesq Agropec Trop 49:e53673. https://doi.org/10.1590/1983-40632019v4953673

    Article  Google Scholar 

  • Diab EEE, Mohamed SE (2008) In vitro morphogenesis and plant regeneration of bamboos (Oxytenanthera abyssinica A. Rich. Munro). Int J Sustain Crop Prod 3:72–79. https://doi.org/10.9734/BJI/2017/32715

    Article  Google Scholar 

  • Dutta S, Biswas P, Chakraborty S, Mitra D, Pal A, Das M (2018) Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genomics 19:190. https://doi.org/10.1186/s12864-018-4571-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duverger O, Morasso MI (2008) Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol 216(2):337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erpen L, Devi HS, Grosser JW et al (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult 132:1–25. https://doi.org/10.1007/s11240-017-1320-6

    Article  CAS  Google Scholar 

  • Folta KM, Maruhnich SA (2007) Green light: a signal to slow down or stop. J Exp Bot 58(2):309–317

    Google Scholar 

  • Funada R, Kubo T, Tabuchi M, Sugiyama T, Fushitani M (2001) Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densiflora Sieb. et Zucc. stems in relation to earlywood/latewood transition and cessation of tracheid production. Holzforschung 55:128–134

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ganie IB, Shahzad A, Ahmad Z, Bukhari NA, Parveen K (2021a) Transgenic approaches in bamboo. In: Ahmad Z, Ding Y, Shahzad A (eds) Biotechnological advances in bamboo. Springer, Singapore

    Google Scholar 

  • Ganie IB, Liana A, Ahmad Z, Shahzad A (2021b) Polymorphism and phylogenetic relationships in bamboo. In: Ahmad Z, Ding Y, Shahzad A (eds) Biotechnological advances in bamboo. Springer, Singapore

    Google Scholar 

  • Gantait S, Pramanik BR, Banerjee M (2018) Optimization of planting materials for large scale plantation of Bambusa balcooa Roxb.; Influence of propagation methods. J Saudi Soc 17:79–87. https://doi.org/10.1016/j.jssas.2015.11.008

    Article  Google Scholar 

  • Garcia-Ramirez Y, Berrera GP, Freire-Seijo M et al (2019) Effect of sucrose on physiological and biochemical changes of proliferated shoots of Banbusa vulgaris Schrad. Ex Wendl in temporary immersion. Plant Cell Tissue Organ Cult 137:239–247. https://doi.org/10.1007/s11240-019-01564-z

    Article  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Sucrose. Plant propagation by tissue culture. Springer, New York, pp 115–144

    Google Scholar 

  • Gillis K, Gielis J, Peeters H, Dhooghe E, Oprins J (2007) Somatic embryogenesis from mature Bambusa balcooa Roxb as basis for mass production of elite forestry bamboos. Plant Cell Tissue Organ Cult 91:115–123. https://doi.org/10.1007/s11240-007-9236-1

    Article  Google Scholar 

  • Godbole S, Sood A, Thakur R, Sharma M, Ahuja PS (2002) Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. ex Munro. Curr Sci 83:885–889

    CAS  Google Scholar 

  • Goyal AK, Sen A (2016) In vitro regeneration of bamboos, the “Green Gold”: an overview. Indian J Biotechnol 15:9–16

    CAS  Google Scholar 

  • Gu JS, Luo LF, Zhong Y, Sun JY, Umezawa T, Li LG (2019) Phosphorylation of LTF1, an MYB transcription factor in Populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Mol Plant 12:1325–1337. https://doi.org/10.1016/j.molp.2019.05.008

    Article  CAS  Google Scholar 

  • Guo Z, Zhang Z, Yang X, Yin K, Chen Y, Zhang Z et al (2020) PSBR1, encoding a mitochondrial protein, is regulated by brassinosteroid in moso bamboo (Phyllostachys edulis). Plant Mol Biol 103:63–74. https://doi.org/10.1007/s11103-020-00975-3.1

    Article  CAS  PubMed  Google Scholar 

  • Hadiarto T, Oktavia F, Mardiyani S (2021) Effect of cytokinin type and concentration on in vitro flowering of pineapple (Ananas comosus L.). J Hortic Plant Res 10(3):39–47

    Google Scholar 

  • Hisamoto Y, Kobayashi M (2012) Flowering habit of two bamboo species, Phyllostachys meyeri and Shibataea chinensis, analyzed with flowering gene expression. Plant Species Biol 28:109–117. https://doi.org/10.1111/j.1442-1984.2012.00369.x

    Article  Google Scholar 

  • Ho CW, Chang WC (1998) In vitro flowering of albino bamboo (Bambusa oldhamii Munro) regenerates derived from an eleven year old embryogenic cell line. Acta Hortic 461:433–438

    Article  Google Scholar 

  • Hu X, Wu Y, Wu H, Zhang M, Liu Y, Zhu Y (2020) Optimization of bamboo (Phyllostachys praecox) shoot proliferation in vitro and correlation analysis of carbon sources and endogenous phytohormones. Plant Cell Tiss Organ Cult 141(1):133–145

    Google Scholar 

  • Huang LC, Huang BL, Chen WL (1989) Tissue culture investigations of bamboo—IV. Organogenesis leading to adventitious shoots and plants in excised shoot apices. Environ Exp Bot 19:307–315. https://doi.org/10.1016/0098-8472(89)90004-X

    Article  Google Scholar 

  • Huang Y, Liao Q, Hu S, Cao Y, Xu G et al (2018) Molecular cloning and expression analysis of seven sucrose synthase genes in bamboo (Bambusa emeiensis): investigation of possible roles in the regulation of cellulose biosynthesis and response to hormones. Biotechnol Biotechnol Equip 32:316–323. https://doi.org/10.1080/13102818.2017.1412271

    Article  CAS  Google Scholar 

  • Huang B, Huang Z, Ma R et al (2021a) Genome-wide identification and expression analysis of LBD transcription factor genes in moso bamboo (Phyllostachys edulis). BMC Plant Biol 21:296. https://doi.org/10.1186/s12870-021-03078-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Huang Z, Ma R et al (2021b) Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis). Sci Rep 11:16492. https://doi.org/10.1038/s41598-021-95899-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Bamboo and Rattan Organisation: Trade Overview (2018) Bamboo and Rattan Commodities in the International Market, www.inbar.int, https://www.inbar.int/resources/(2021).

  • Jat BL, Panwar R, Gena D, Mir MA, Rawat RS (2016) In vitro micropropagation of Dendrocalamus strictus (solid bamboo). World J Pharm Res 5:838–864

  • Jha A, Das S (2021) Assessment of in-vitro culture through nodal explants of Dendrocalamus hamiltonii. Int J Appl Agric 2:130–133. https://doi.org/10.52804/ijaas2021.2115

    Article  Google Scholar 

  • Jha A, Das S, Kumar B (2013) Micropropagation of Dendrocalamus hamiltonii through nodal explants. Glob J Bio-Sci Biotechnol 2:580–582

    Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. https://doi.org/10.1007/s10725-005-3478-x

    Article  CAS  Google Scholar 

  • Jiménez VM, Guevara E (2007) Micropropagation of bamboo species through axillary shoot proliferation. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 465–476

    Chapter  Google Scholar 

  • Jimenez VM, Castillo J, Tavares E, Guevara E, Montiel M (2006) In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation. Plant Cell Tissue Organ Cult 86:389–395. https://doi.org/10.1007/s10725-005-3478-x

    Article  CAS  Google Scholar 

  • John CK, Nadgauda RS (1999) In vitro-induced flowering in bamboos. In Vitro Cell Dev Biol Plant 35:309–315

    Article  CAS  Google Scholar 

  • Joshi M, Nadgauda RS (1997) Cytokinins and in vitro induction of flowering in bamboo: Bambusa arundinacea (Retz). Wild Curr Sci 73:523–526

    CAS  Google Scholar 

  • Jullien F, Van KTT (1994) Micropropagation and embryoid formation from young leaves of Bambusa glaucescens Golden Goddess. Plant Sci 98:199–207

    Article  CAS  Google Scholar 

  • Kabade AU (2009) Studies on refinement of protocols for rapid and mass in vitro clonal propagation, evaluation of genetic fidelity and growth performance of bamboo species- Bambusa bambos (L.) Voss and Dendrocalamus strictus (Roxb.) Nees. Ph.D. thesis. Forest Research Institute, Dehradun, India, p 198

  • Kahsay B, Mekibib F, Teklewold A (2017) In vitro propagation of Oxytenanthera abyssinica (A. Rich. Munro) from seed culture. Biotechnol J 1:1–13. https://doi.org/10.9734/BJI/2017/32715

    Article  Google Scholar 

  • Kalaiarasi K, Sangeetha P, Subramaniam S, Venkatachalam P (2014) Development of an efficient protocol for plant regeneration from nodal explants of recalcitrant bamboo (Bambusa arundinacea Retz. wild) and assessment of genetic fidelity by DNA markers. Agrofor Syst 88:527–537

  • Kaladhar DSVGK, Tiwari P, Duppala SK (2017) A rapid in vitro micropropagation of Bambusa vulgaris using inter-node explants. Int J Life Sci Sci Res 3:1052–1054. https://doi.org/10.21276/ijlssr.2017.3.3.14

    Article  Google Scholar 

  • Kant A, Arya S, Arya ID (2009) Micropropagation protocol for Melocanna baccifera using nodal explants from mature clump. In: 8th World Bamboo Congress, Thailand, pp 2–12. https://worldbamboo.net/proceedings/wbcviii

  • Kapoor P, Rao IU (2006) In vitro rhizome induction and plantlet formation from multiple shoots in Bambusa bambos var. gigantea Bennet and Gaur by using growth regulators and sucrose. Plant Cell Tissue Organ Cult 85:211–217. https://doi.org/10.1007/s11240-005-9074-y

    Article  CAS  Google Scholar 

  • Kaur G, Kalia K, Kalia RK (2021) Seasonal variation in endogenous hormones and their role in in vitro regeneration of Eucalyptus tereticornis Sm. J for Res 32(2):853–865. https://doi.org/10.1007/s11676-020-01305-1

    Article  Google Scholar 

  • Khare SR, Kharate PS, Kumar Sahu R, Jha Z (2021) The rapid in-vitro micropropagation of bamboo (Dendrocalamus strictus) and its genetic fidelity testing using ISSR markers. Environ Conserv 22(3):69–77. https://doi.org/10.36953/ECJ.2021.22308

    Article  CAS  Google Scholar 

  • Komatsu YH, Batagin-Piotto KD, Brondani GE, Gonçalves AN, Almeida MD (2011) In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. J for Res 22:209–215. https://doi.org/10.1007/s11676-011-0152-1

    Article  CAS  Google Scholar 

  • Lee PC, Kumar S, Shukor NA (2018) In vitro regeneration of bamboo species. PJSRR 4:80–88

    Google Scholar 

  • Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54(4):569–581

    Article  CAS  PubMed  Google Scholar 

  • Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, Miao Y (2017) Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 7:6675. https://doi.org/10.1038/s41598-017-06701-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wu M, Liu H, Gao Y, Xiang Y (2018) Systematic identification and expression pattern analysis of the Aux/IAA and ARF gene families in moso bamboo (Phyllostachys edulis). Plant Physiol Biochem 130:431–444. https://doi.org/10.1016/j.plaphy.2018.07.033

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang K, Wang S, Lou Y, Zhu C, Gao Z (2020) Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses. Plant Cell Rep 39:751–763. https://doi.org/10.1007/s00299-020-02528-w

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gao C, Miao Y et al (2021) Development of a highly efficient callus induction and plant regeneration system for Dendrocalamus sinicus using hypocotyls as explants. Plant Cell Tiss Organ Cult 145:117–125. https://doi.org/10.1007/s11240-020-01996-y

    Article  CAS  Google Scholar 

  • Li B, Li Q, Mao X, Li A, Wang J, Chang X et al (2022) Regulation of root growth by auxin signaling and its interaction with other plant hormones. Plant Commun 3(1):100237. https://doi.org/10.1016/j.xplc.2022.100237

    Article  Google Scholar 

  • Lin CS, Chang WC (1998) Micropropagation of Bambusa edulis through nodal explants of field-grown culms and flowering of regenerated plantlets. Plant Cell Rep 17:617–620. https://doi.org/10.1007/s002990050453

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Lin CC, Chang WC (2003) In vitro flowering of Bambusa edulis and subsequent plantlet survival. Plant Cell Tissue Organ Cult 72:71–78. https://doi.org/10.1023/A:1021281217589

    Article  CAS  Google Scholar 

  • Lin CS, Lin CC, Chang WC (2004) Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tissue Organ Cult 76:75–82. https://doi.org/10.1023/A:1021281217589

    Article  CAS  Google Scholar 

  • Lin CS, Kalpana K, Chang WC, Lin NS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. HortScience 42:1243–1246. https://doi.org/10.21273/HORTSCI.42.5.1243

    Article  CAS  Google Scholar 

  • Lin X, Huang L, Fang W (2012) Bamboo regeneration via embryogenesis and organogenesis. In: Sato K-I (ed) Embryogenesis. INTECH Open Access Publisher

  • Liu H, Wu M, Zhu D, Pan F, Wang Y, Wang Y et al (2017) Genome-wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis). BMC Plant Biol 17:29. https://doi.org/10.1186/s12870-017-0980-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y (2018b) TCP transcription factors in moso bamboo (Phyllostachys edulis): genome-wide identification and expression analysis. Front Plant Sci 9:1263. https://doi.org/10.3389/fpls.2018.01263

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li Y, Wu Y, Wu M, Zeng S, Wu K (2021) Effect of light intensity and quality on in vitro propagation and flowering of Cymbidium orchids. J Hortic Sci Biotechnol 96(2):163–171

    Google Scholar 

  • Liu R, Vasupalli N, Hou D, Stalin A, Wei H, Zhang H, Lin X (2022) Genome-wide identification and evolution of WNK kinases in Bambusoideae and transcriptional profiling during abiotic stress in Phyllostachys edulis. Peer J 10:e12718. https://doi.org/10.7717/peerj.12718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Hui C, Wang F, Wang M, Liu G (2018a) Review of the resources and utilization of bamboo in China. In: Bamboo - current and future prospects, pp 133–142

  • Maiya SM, Janardan L, Prasad GD (2021) The impact of various factors of in vitro culture on shoot multiplication and plant production of the Bambusa nutans subsp. cupulata in in vitro propagation through nodal segments. Int J Res Anal Rev 8:766–776

  • McCown BH, Lloyd G (1981) Woody plant medium (WPM): a mineral nutrient formulation for microculture of woody plant-species. HortScience 16:453–453

    Google Scholar 

  • Mehta U, Rao IVR, Ram HYM (1982) Somatic embryogenesis in bamboo. Plant tissue culture. In: Fujiwara A (ed) Japan Association Proceedings of 5th Intl Cong Plant Tiss Cell Cult, pp 109–110

  • Mishra Y, Rana PK, Shirin F, Ansari SA (2001) Augmenting in vitro shoot multiplication by vipul (triacontanol) and adventitious rhizogenesis by rice bran extract in Dendrocalamus strictus. Indian J Exp Biol 39:165–169

    CAS  PubMed  Google Scholar 

  • Mishra Y, Patel PK, Yadav S, Shirin F, Ansari SA (2008) A micropropagation system for cloning of Bambusa tulda Roxb. Sci Hortic 115:315–318. https://doi.org/10.1016/j.scienta.2007.10.002

    Article  CAS  Google Scholar 

  • Mudoi KD, Borthakur M (2009) In vitro micropropagation of Bambusa balcooa Roxb. through nodal explants from field grown culms and scope for up scaling. Curr Sci 96:962–966

    Google Scholar 

  • Mudoi KD, Saikia SP, Goswami A, Gogoi A, Bora D, Borthakur M (2013) Micropropagation of important bamboos: a review. Afr J Biotechnol 12:2770–2785

    Google Scholar 

  • Mudoi KD, Saikia SP, Borthakur M (2014) Effect of nodal positions, seasonal variations, shoot clump and growth regulators on micropropagation of commercially important bamboo, Bambusa nutans Wall. Ex. Munro. Afr J Biotechnol 13:1961–1972. https://doi.org/10.5897/AJB2014.13659

    Article  CAS  Google Scholar 

  • Mukunthakumar S, Mathur J (1992) Artificial seed production in the male bamboo Dendrocalamus strictus L. Plant Sci 87:109–113. https://doi.org/10.1016/0168-9452(92)90198-U

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nadgauda RS, John CK, Masearenhas AF (1990) Precocious flowering and seedling behavior in tissue cultured bamboos. Nature 344:355–356. https://doi.org/10.1038/344335a0

    Article  Google Scholar 

  • Nadgir AL, Phadke CH, Gupta PK, Parasharami VA, Nair S, Mascarenhas AF (1984) Rapid multiplication of bamboo by tissue culture. Silvae Genet 33:219–223

    Google Scholar 

  • Negi D, Saxena S (2011) In vitro propagation of Bambusa nutans Wall. ex Munro through axillary shoot proliferation. Plant Biotechnol Rep 5:35–43. https://doi.org/10.1007/s11816-010-0154-z

    Article  Google Scholar 

  • Nirmala C, Bisht MS, Bajwa HK, Santosh O (2018) Bamboo: a rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci Technol 77:91–99. https://doi.org/10.1016/j.tifs.2018.05.003

    Article  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Nogueira JS, Gomes HT, Scherwinski-Pereira JE (2019) Micropropagation, plantlets production estimation and ISSR marker-based genetic fidelity analysis of Guadua magna and G. angustifolia. Pesq Agropec Trop Goiânia 49:e53743. https://doi.org/10.1590/1983-40632019v4953743

    Article  Google Scholar 

  • Nurul Islam SAM, Rahman MM (2005) Micro-cloning in commercially important six bamboo species for mass propagation and at large scale cultivation. Plant Tissue Cult Biotechnol 15:103–111

    Google Scholar 

  • Ogita S, Kashiwagi H, Kato Y (2008) In vitro node culture of seedlings in bamboo plant, Phyllostachys meyeri McClure. Plant Biotechnol 25:381–385. https://doi.org/10.5511/PLANTBIOTECHNOLOGY.25.381

    Article  CAS  Google Scholar 

  • Ogita S, Kikuchi N, Nomura T, Kato Y (2011) A practical protocol for particle bombardment-mediated transformation of Phyllostachys bamboo suspension cells. Plant Biotechnol 28:43–50. https://doi.org/10.5511/plantbiotechnology.10.1101a

    Article  CAS  Google Scholar 

  • Oh S, Park S, Han KH (2003) Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot 54:2709–2722. https://doi.org/10.1093/jxb/erg304

    Article  CAS  PubMed  Google Scholar 

  • Ojha A, Verma N, Kumar A (2009) In vitro micropropagation of economically important edible bamboo (Dendrocalamus asper) through somatic embryos from root, leaves and nodal segments explants. Res Crops 10:430–436

    Google Scholar 

  • Oprins J, Grunewald W, Gillis K, Delaere P, Peeters H, Gielis J (2004) Micropropagation: a general method for commercial bamboo production. In: World bamboo congress, vol 7, pp 1–11. https://biblio.ugent.be/publication/675271

  • Ornellas TS, Fritsche Y, Medina EC, Guerra MP (2022) Somatic embryogenesis from young inflorescences of the giant bamboo Dendrocalamus asper (Schult f.) Backer ex Heyne. Plant Cell Tiss Organ Cult 2222:1–10. https://doi.org/10.21203/rs.3.rs-1036356/v1

    Article  Google Scholar 

  • Pan F, Wu M, Hu W, Liu R, Yan H, Xiang Y (2019) Genome-wide identification and expression analyses of the bZIP transcription factor genes in moso bamboo (Phyllostachys edulis). Int J Mol Sci 20:2203. https://doi.org/10.3390/ijms20092203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z (2013a) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–462. https://doi.org/10.1038/ng.2569

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Zhang C, Zhang Y, Hu T, Mu S, Li X, Gao J (2013b) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS ONE 8:e78944. https://doi.org/10.1371/journal.pone.0078944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pospisilova J (2016) Interaction of light and plant tissue culture. In Vitro Cell Dev Biol- Plant 52(4):393–412

    Google Scholar 

  • Prutpongse P, Gavinlertvatana P (1992) In vitro micropropagation of 54 species from 15 genera of bamboo. HortScience 27:453–454

    Article  CAS  Google Scholar 

  • Qiao G, Yang H, Zhang L, Han X et al (2014) Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cell Dev Biol - Plant 50:385–391. https://doi.org/10.1007/s11627-013-9591-z

    Article  CAS  Google Scholar 

  • Rajput BR, Jani MD, Sasikumar K, Manokari M, Shekhawat MS (2019) An improved micropropagation protocol for manga bamboo – Pseudoxytenanthera stockii (Munro) T. Q Nguyen Int Lett Nat Sci 25:141–154

    CAS  Google Scholar 

  • Raju RI, Roy SK (2016) Mass propagation of Bambusa bambos (L.), Voss through in vitro culture. Jahangirnagar Univ J Biol Sci 5:15–26

    Article  Google Scholar 

  • Ramanayake SMSD, Yakandawala K (1997) Micropropagation of the giant bamboo (Dendrocalamus giganteus Munro) from nodal explants of field grown culms. Plant Sci 129:213–223. https://doi.org/10.1016/S0168-9452(97)00185-4

    Article  CAS  Google Scholar 

  • Ramanayake SMSD, Yakandawala K, Nilmini-Deepika PKD, Ikbal MCM (1995) Studies on micropropagation of Dendrocalamus giganteus and Bambusa vulgaris var. striata. Bamboo, people and the environment, vol 1. INBAR, Beijing, pp 75–85

    Google Scholar 

  • Ramanayake SMSD, Meemaduma VN, Weerawardene TE (2006) In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ‘Striata’). Sci Hortic 110:109–113. https://doi.org/10.1016/j.scienta.2006.06.016

    Article  CAS  Google Scholar 

  • Rathod Jaimik D, Pathak Nimish L, Patel Ritesh G, Bhatt Nayna M (2011) Phytopharmacological properties of Bambusa arundinacea as a potential medicinal tree: an overview. J Appl Pharm Sci 1:27–31

    Google Scholar 

  • Rathore TS, Kabade U, Jagadish MR, Somashekar PV, Viswanath S (2009) Micropropagation and evaluation of growth performance of the selected industrially important bamboo species in southern India. In: Proceedings of the 8th World Bamboo Congress Lucas S (ed) Bangkok, Thailand, pp 41–55

  • Ravikumar R, Ananthakrishnan G, Kathiravan K, Ganapathi A (1998) In vitro shoot propagation of Dendrocalamus strictus Nees. Plant Cell Tissue Organ Cult 52:189–192. https://doi.org/10.1023/A:1006092620731

    Article  CAS  Google Scholar 

  • Reddy GM (2006) Clonal propagation of bamboo (Dendrocalamus strictus). Curr Sci 91:1462–1464

    Google Scholar 

  • Rout GR, Das P (1994) Somatic embryogenesis and in vitro flowering in 3 species of bamboo. Plant Cell Rep 13:683–686. https://doi.org/10.1007/BF00231624

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Das P (2003) Effect of sucrose concentration on in vitro growth and metabolism of potato cultivars. Biol Plant 47(4):601–604

    Google Scholar 

  • Sabir F, Sabir M (2015) Light-induced in vitro plant propagation. In Vitro Cell Dev Biol- Plant 51(2):127–144

    Google Scholar 

  • Sahu KCK, Kaladhar DSVGK, Belorkar SA (2018) A rapid in vitro propagation of Bambusa balcooa by plant tissue culture technique. J Biotechnol 8:27–31. https://doi.org/10.37591/(rrjobt).v8i1.166

    Article  CAS  Google Scholar 

  • Saini H, Arya ID, Arya S, Sharma R (2016) In vitro micropropagation of Himalayan weeping bamboo, Drepanostachyum falcatum. Am J Plant Sci 7:1317–1324. https://doi.org/10.4236/ajps.2016.79126

    Article  CAS  Google Scholar 

  • Sánchez-López R, García-Sánchez F, del Amor FM, Bañón S (2014) Influence of the carbon source and its concentration on the in vitro rooting of Pistacia vera L. microshoots. In Vitro Cell Dev Biol Plant 50(2):167–173

    Google Scholar 

  • Sandhu M, Wani SH, Jiménez VM (2017) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell Tiss Organ Cult 132:27–53. https://doi.org/10.1007/s11240-017-1325-1

    Article  CAS  Google Scholar 

  • Sanjaya Rathore TS, Rai VR (2005) Micropropagation of Pseudoxytenanthera stocksii Munro. In Vitro Cell Dev Biol Plant 41:333–337. https://doi.org/10.1079/IVP2004625

    Article  CAS  Google Scholar 

  • Saxena S (1990) In vitro propagation of the bamboo (Bambusa tulda Roxb.) through shoot proliferation. Plant Cell Rep 9:431–434. https://doi.org/10.1007/BF00232266

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Bhojwani SS (1993) In vitro clonal multiplication of 4-year old plants of the bamboo, Dendrocalamus longispathus Kurz. In Vitro Cell Dev Biol - Plant 29:135–142. https://doi.org/10.1007/BF02632285

    Article  Google Scholar 

  • Saxena S, Dhawan V (1999) Regeneration and large-scale propagation of bamboo (Dendrocalamus strictus Nees) through somatic embryogenesis. Plant Cell Rep 18:438–443. https://doi.org/10.1007/s002990050600

    Article  CAS  Google Scholar 

  • Saxena S, Dhawan V (1994) Micropropagation research in South Asia. pp 101–114. In: Constraints to Production of Bamboo and Rattan (With special reference to planting materials and management of natural stands). International Network for Bamboo and Rattan and the International Development Research Centre. INBAR Technical Report No. 5, p 245

  • Saxena S, Dhawan V (1995) Commercialization of bamboo tissue culture. In: Rao IVR, Sastry CB, Widjaja E (eds) Bamboo, people and the environment, Vth international bamboo workshop and IV international bamboo congress, Ubud, pp 62–74

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Scott TK (1972) Auxins and roots. Annu Rev Plant Physiol 23:235–258

    Article  CAS  Google Scholar 

  • Shahzad A, Tahseen S, Wasi A, Ahmad Z, Khan AA (2021) Application of biotechnological tool in bamboo improvement. In: Ahmad Z, Ding Y, Shahzad A (eds) Biotechnological advances in bamboo. Springer, Singapore

    Google Scholar 

  • Sharma P, Sarma KP (2013) In vitro propagation of Bambusa tulda: an important plant for better environment. J Environ Res Dev 7:1216–1223

    Google Scholar 

  • Sharma SK, Kalia S, Kalia RK (2012) Rapid in vitro regeneration from 40-year-old clump of Bambusa nutans Wall. ex Munro. J Indian Bot Soc 91:365–378

    Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology: a complete synthesis. Biotechnol Adv 31(2):186–207. https://doi.org/10.1016/j.biotechadv.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  • Shirgurkar MV, Thengane SR, Insiya S, Poonawala J, Nadgauda RS, Mascarenhas AF (1996) A simple in vitro method of propagation and rhizome formation in Dendrocalamus strictus Nees. Curr Sci 70:940–944

    Google Scholar 

  • Shirin F, Rana PK (2007) In vitro plantlet regeneration from nodal explants of field-grown culms in Bambusa glaucescens Willd. Plant Biotechnol Rep 1:141–147. https://doi.org/10.1007/s11816-007-0020-9

    Article  Google Scholar 

  • Singh M, Jaiswal U, Jaiswal VS (2001) Thidiazuron-induced shoot multiplication and plant regeneration in bamboo (Dendrocalamus strictus Nees). J Plant Biochem Biotechnol 10:133–137. https://doi.org/10.1007/BF03263122

    Article  CAS  Google Scholar 

  • Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436. https://doi.org/10.3390/ijms14047815

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Jaiswal U, Jaiswal VS (2003) In vitro selection of NaCl-tolerant callus lines and regeneration of plantlets in a bamboo (Dendrocalamus strictus Nees). In Vitro Cell Dev Biol -Plant 39:229–233. https://doi.org/10.1079/IVP2002389

    Article  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia, RK (2011) Micropropagation of Dendrocalamus asper (Schult. & Schult. F. Backer ex K Heyne): An exotic edible bamboo. J Plant Biochem Biotechnol 21:220–228

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012a) Micropropagation of Dendrocalamus asper Schult. & Schult. F. Backer ex k. Heyne): an exotic edible bamboo. J Plant Biochem Biotechnol 21:220–228. https://doi.org/10.1007/s13562-011-0095-9

    Article  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012b) Seasonal influences on in vitro bud break in Dendrocalamus hamiltonii Arn. ex Munro nodal explants and effect of culture microenvironment on large scale shoot multiplication and plantlet regeneration. Indian J Plant Physiol 17:9–21

    CAS  Google Scholar 

  • Singh SR, Singh R, Kalia S, Dalal S, Dhawan AK, Kalia RK (2013) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo – a plant with extraordinary qualities. Physiol Mol Biol Plants 19:21–41. https://doi.org/10.1007/s12298-012-0147-1

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar G, Kumari MK, Van Staden J, Jaganath B (2020) Importance of carbon sources in plant tissue culture: a review. Plants 9(10):1326

    Google Scholar 

  • Somashekar PV, Rathore TS, Shashidhar KS (2008) Rapid and simplified method of micropropagation of Pseudoxytenanthera stocksii. In: Ansari SA, Narayanan C, Mandal AK (eds) Forest biotechnology in India. Satish Serial Publishing House, Delhi, pp 165–182

    Google Scholar 

  • Sood A, Ahuja PS, Sharma M, Sharma OP, Godbole S (2002) In vitro protocols and field performance of elites of an important bamboo Dendrocalamus hamiltonii Nees et Arn. ex Munro. Plant Cell Tissue Organ Cult 71:55–63. https://doi.org/10.1023/A:1016582732531

    Article  CAS  Google Scholar 

  • Sood A, Bhattacharya A, Sharma M, Sharma RK et al (2013) Somatic embryogenesis and Agrobacterium mediated genetic transformation in bamboos. In: Aslam J, Srivastava PS, Sharma MP. Narosa Book Distributors Pvt Ltd, New Delhi, pp 168–178

  • Stein O, Granot D (2019) An overview of sucrose synthases in plants. Front Plant Sci 10:95. https://doi.org/10.3389/fpls.2019.00095

    Article  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456. https://doi.org/10.1016/S1369-5266(00)00199-0

    Article  CAS  PubMed  Google Scholar 

  • Sudhakaran S, Teixeira da Silva JA, Sreeramanan S (2006) Test tube bouquets - in vitro flowering. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: Advances and topical issues, 1st edn. Global Science Books Ltd, Isleworth, pp 336–346

    Google Scholar 

  • Sun GZ, Ma MQ, Zhang YQ, Xie XL, Chai JF, Li XP et al (1999) A medium for callus induction and subculture of wheat. J Hebei Agric Sci 2:24–26

    Google Scholar 

  • Sun H, Wang S, Lou Y, Zhu C, Zhao H, Li Y, Gao Z (2018) Whole-Genome and Expression Analyses of Bamboo Aquaporin Genes Reveal Their Functions Involved in Maintaining Diurnal Water Balance in Bamboo Shoots. Cells 7(11):195. https://doi.org/10.3390/cells7110195

  • Teixeira da Silva JA, Kulus D, Zhang X, Zeng SJ, Ma GH, Piqueras A (2016) Disinfection of explants for saffron (Crocus sativus L.) tissue culture. Environ Exp Biol 14(4):183–198. https://doi.org/10.22364/eeb.14.25

    Article  Google Scholar 

  • Thapa N, Gauchan DP, Suwal MM, Bhuju S et al (2018) In vitro assessment of Bambusa balcooa Roxb. for micropropagation. J Emerg Technol 5:12–18

    Google Scholar 

  • Torrey JG (1976) Root hormones and plant growth. Annu Rev Plant Physiol 27:435–459

    Article  CAS  Google Scholar 

  • Vale PAAD, Oliveira JBD, Costa FHDS, Scherwinski-Pereira JE (2019) Height and number of shoots on the survival and development of micropropagated bamboo plantlets during pre-acclimatization. Pesq Agropec Trop Goiânia 49:e53751

    Article  Google Scholar 

  • Van Huylenbroeck JM, Piqueras A, Debergh PC (1998) Photosynthesis and carbon metabolism in leaves formed prior and during ex vitro acclimatization of micropropagated plants. Plant Sci 134:21–30. https://doi.org/10.1016/S0168-9452(98)00043-0

    Article  Google Scholar 

  • Venkatachalam P, Kalaiarasi K, Sreeramanan S (2015) Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) Wild: a recalcitrant bamboo species. J Genet Eng Biotechnol 13:193–200. https://doi.org/10.1016/j.jgeb.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma RK, Arya ID (1998) Effect of arbuscular mycorrhizal fungal isolates and organic manure on growth and mycorrhization of micropropagated Dendrocalamus asper plantlets and on spore production in their rhizosphere. Mycorrhiza 8:113–116. https://doi.org/10.1007/s005720050221

    Article  Google Scholar 

  • Vipin KM, Ramesh KV (2021) Optimizing photoperiod and light intensity for in vitro flowering of Caralluma adscendens (Roxb.) Haw. JCSB 24(6):517–525

    Google Scholar 

  • Vorontsova MS, Clark LG, Dransfield J, Govaerts R, Baker WJ (2016) World checklist of bamboos and rattans; International Network of Bamboo and Rattan & the Board of Trustees of the Royal Botanic Gardens." Kew, pp 1–453

  • Waikhom SD, Louis B (2014) An effective protocol for micropropagation of edible bamboo species (Bambusa tulda and Melocanna baccifera) through nodal culture. Sci World J. https://doi.org/10.1155/2014/345794

    Article  Google Scholar 

  • Waikhom SD, Sharma GJ (2009) In vitro propagation of Arundinaria callosa Munro – an edible bamboo from nodal explants of mature plants. Open Plant Sci J 3:35–39. https://doi.org/10.2174/1874294700903010035

    Article  CAS  Google Scholar 

  • Wang S, Sun H, Xu X, Yang K, Zhao H, Li Y et al (2019) Genome-wide identification and expression analysis of brassinosteroid action-related genes during the shoot growth of moso bamboo. Mol Biol Rep 46:1909–1930. https://doi.org/10.1007/s11033-019-04642-9

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Sawa Y, Nagaoka N, Kozai T (2000) A new micropropagation system for Pleioblastus pygmaeus Nakai. In: Proc Int Symp Royal Project Foundation. Chiang Mai, Thailand, pp 94–101

  • Wei Q, Lin G, Chen J, Fei Z, Chen M, Cao J (2019) Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiol 39:1201–1214. https://doi.org/10.1093/treephys/tpz063

    Article  CAS  PubMed  Google Scholar 

  • Wiersma R (2008) Bioluminescent bamboo. Newsl South Calif Chap Am Bamboo Soc 18:2–5

    Google Scholar 

  • Woods SH, Philips GC, Woods JE, Collins GB (1992) Somatic embryogenesis and plant regeneration from zygotic embryo explants in Mexican weeping bamboo, Otatea acuminata Aztecorum. Plant Cell Rep 11:257–261. https://doi.org/10.1007/BF00235077

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Chen Y (1987) A study on the genotypical differences in anther culture of Keng rice (Oryza sativa subsp. Keng). Acta Genet Sin 14:168–174

    Google Scholar 

  • Wu M, Li Y, Chen D, Liu H, Zhu D, Xiang Y (2016) Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis). Sci Rep 6:24520. https://doi.org/10.1038/srep24520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Liu H, Han G, Cai R, Pan F, Xiang Y (2017) A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 7:11721. https://doi.org/10.1038/s41598-017-10795-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Cai M, Li X, Zheng H, Xie Y, Cheng Z (2020) Overexpression of PheNAC3 from moso bamboo promotes leaf senescence and enhances abiotic stress tolerance in Arabidopsis. PeerJ Life Environ 8:e8716. https://doi.org/10.7717/peerj.8716

    Article  CAS  Google Scholar 

  • Xu JC, Li YJ (2018) Light quality and in vitro plant development. Plant Cell Tiss Organ Cult 133(2):179–187

    Google Scholar 

  • Xu H, Chen L-J, Qu L-J, Gu H-Y, Li D-Z (2010) Functional conservation of the plant EMBRYONIC FLOWER2 gene between bamboo and Arabidopsis. Biotechnol Lett 32:1961–1968. https://doi.org/10.1007/s10529-010-0362-1

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Lou Y, Yang K, Shan X, Zhu C, Gao Z (2019) Identification of homeobox genes associated with lignification and their expression patterns in bamboo shoots. Biomolecules 9:862. https://doi.org/10.3390/biom9120862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Li Y, Wang S, Xu X, Sun H, Zhao H (2019) Genome-wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis). PeerJ 6:e6242. https://doi.org/10.7717/peerj.6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasodha R, Sumathi R, Malliga P, Gurumurthi K (1997) Genetic enhancement and mass production of quality propagules of Bambusa nutans and Dendrocalamus membranaceous. Indian for 123:303–306

    Google Scholar 

  • Yasodha R, Kamala S, Kumar SPA, Kumar PD, Kalaiarasi K (2008) Effect of glucose on in vitro rooting of mature plants of Bambusa nutans. Sci Hortic 116:113–116. https://doi.org/10.1016/j.scienta.2007.10.025

    Article  CAS  Google Scholar 

  • Ye S-W, Cai C-Y, Ren H-B, Wang W-J et al (2017) An efficient plant regeneration and transformation system of ma bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant. Front Plant Sci 8:1298. https://doi.org/10.3389/fpls.2017.01298

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye S-W, Chen G, Kohnen MV, Wang W-J et al (2020) Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol J 18:1501–1503. https://doi.org/10.1111/pbi.13320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh ML, Chang WC (1986a) Plant regeneration through somatic embryogenesis in callus culture of green bamboo (Bambusa oldhamii Munro). Theor Appl Genet 73:161–163. https://doi.org/10.1007/BF00289269

    Article  CAS  PubMed  Google Scholar 

  • Yeh ML, Chang WC (1986b) Somatic embryogenesis and subsequent plant regeneration from inflorescence callus of Bambusa beecheyana Munro var. beecheyana. Plant Cell Rep 5:409–411. https://doi.org/10.1007/BF00269628

    Article  CAS  PubMed  Google Scholar 

  • Yuan JL, Yue JJ, Wu XL, Gu X-P (2013) Protocol for callus in induction and somatic embryogenesis in Moso bamboo. PLoS ONE 8:e81954. https://doi.org/10.1371/journal.pone.0081954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Qian Y, Jiang M, Xu J, Yang J, Zhang T, Gou L, Pi E (2020) Regulation Mechanisms of Plant Basic Leucine Zippers to Various Abiotic Stresses. Front Plant Sci 11:1258. https://doi.org/10.3389/fpls.2020.01258

  • Zang Q, Zhou L, Zhuge F, Yang H, Wang X, Lin X (2016) Callus induction and regeneration via shoot tips of Dendrocalamus hamiltonii. Springerplus 5:1799. https://doi.org/10.1186/s40064-016-3520-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang Q, Liu Q, Zhuge F, Wang X, Lin X (2019) In vitro regeneration via callus induction in Dendrocalamus asper (Schult.) Backer. Propag Ornam Plants 19:66–71

    Google Scholar 

  • Zhang GC, Wang YX (2001) Preliminary study on flowering of tube bamboo seedling. J Bamboo Res 20:1–4. https://doi.org/10.3969/j.issn.1000-6567.2001.01.001

    Article  Google Scholar 

  • Zhang Y, Tang D, Lin X, Ding M, Tong Z (2018) Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC Plant Biol 18:176. https://doi.org/10.1186/s12870-018-1394-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Li P, Zhang C, Wang X, Li Y, Zhang X (2021) Exogenous cytokinin promotes in vitro flowering and induces a shift of carbohydrate metabolism in Chrysanthemum. Plant Cell Tiss Organ Cult 144(3):403–415. https://doi.org/10.1007/s11240-020-01929-6

    Article  Google Scholar 

  • Zheng X, Lin S-Y, Fu H-J, Wan Y-W, Ding Y (2020) The bamboo flowering cycle sheds light on flowering diversity. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00381

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Mccarthy RL, Lee C, Ye ZH (2011) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol 157:1452–1468. https://doi.org/10.1104/pp.111.181354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Chen W, Zhao M, Li Y, Li M, Hu X (2021) Genome-wide characterization and evolutionary analyses of purple acid phosphatase (PAP) gene family with their expression profiles in response to low phosphorus stresses in Moso bamboo (Phyllostachys edulis). Forests 12:326. https://doi.org/10.3390/f12030326

    Article  CAS  Google Scholar 

  • Zhu Y, Song D, Sun J, James RB (2020) Light-induced changes in cellulose and lignin biosynthesis in bamboo (Bambusa oldhamii) shoots. J Agric Food Chem 68(24):6657–6664

    Google Scholar 

Download references

Acknowledgements

Figures 2 was created with https://biorender.com/ (accessed on 2 March 2023) and the authors sincerely thank BioRender.com.

Funding

The work is financially supported by National Key Research and Development Program of China (2021YFD2200503); National Natural Science Foundation for Scholar of China (31870595); Chinese Academy of Engineering Strategic Research and Consulting Project (2021-XZ-33); and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the assessment of the literature, data compilation, writing, interpretation, and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zishan Ahmad or Yulong Ding.

Ethics declarations

Conflict of interest

No. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Yan Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, Z., Teixeira da Silva, J.A., Shahzad, A. et al. Biotechnological interventions in bamboo plants. Plant Cell Tiss Organ Cult 153, 459–487 (2023). https://doi.org/10.1007/s11240-023-02490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02490-x

Keywords

Navigation