Skip to main content
Log in

Pretreatment of seeds with thidiazuron delimits its negative effects on explants and promotes regeneration in chickpea (Cicer arietinum L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Thidiazuron (TDZ) is an important cytokinin-like substance used in plant tissue culture. However, long exposure of plant tissues to TDZ results in abnormal regeneration. The present study reports an efficient regeneration protocol that avoids the TDZ overexposure to chickpea (Cicer arietinum L.) tissues. Two separate experiments were designed for seed pretreatment with TDZ, of which the first one involved short-term pretreatment with various concentrations of TDZ (15, 20 and 25 µM), whereas the second one lacked TDZ pretreatment. Axillary meristem explants prepared from TDZ-pretreated and TDZ-non-pretreated seeds were then analyzed in shoot induction medium (SIM) with or without 4 µM TDZ. Thus, four conditions were chosen to analyze the effect of TDZ: (i) TDZ pretreatment only without TDZ in SIM, (ii) TDZ pretreatment along with TDZ in SIM, (iii) no TDZ pretreatment but there was TDZ in SIM, and (iv) there was neither TDZ pretreatment nor TDZ supplied in SIM (control). The response in terms of percent regeneration (69%), number of shoots per explant (20.66 ± 0.5), minimum number of days taken for multiple shoot induction (7.3 ± 0.5) and effective rooting was the highest under the condition (i) with 20 μM TDZ pretreatment without subsequent TDZ supplementation into the SIM. In addition, shoot elongation medium (SEM-3) having 5 μM benzyladenine, 2 μM kinetin and 2 μM gibberellic acid showed the highest branching and maximum shoot length. In conclusion, we reported an easy and efficient regeneration method in chickpea using TDZ pretreatment only, which showed qualitative multiple shooting and effective rooting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad M, Fautrier AG, McNeil DL, Hill GD, Burritt DJ (1997) In vitro propagation of Lens species and their F1 interspecific hybrids. Plant Cell Tissue Organ Cult 47:169–176

    Article  Google Scholar 

  • Ahmad N, Siddique I, Anis M (2006) Improved plant regeneration in Capsicum annuum L. from nodal segments. Biol Plantarum 50:701–704

  • Akasaka Y, Daimon H, Mii M (2000) Improved plant regeneration from cultured leaf segments in peanut (Arachis hypogaea L.) by limited exposure to thidiazuron. Plant Sci 156:169–175

    Article  CAS  PubMed  Google Scholar 

  • Akram M, Aftab F (2016) Establishment of embryogenic cultures and efficient plant regeneration system from explants of forced softwood shoots of Teak (Tectona grandis L.). Hortic Plant J 2:293–300

    Article  Google Scholar 

  • Alatar AA (2015) Thidiazuron induced efficient in vitro multiplication and ex vitro conservation of Rauvolfia serpentina-a potent antihypertensive drug producing plant. Biotechnol Biotechnol Equip 29:489–497

    Article  Google Scholar 

  • Anwar F, Sharmila P, Saradhi PP (2010) No more recalcitrant: chickpea regeneration and genetic transformation. Afr J Biotech 9:782–797

    Article  CAS  Google Scholar 

  • Bakshi S, Roy NK, Sahoo L (2012) Seedling preconditioning in thidiazuron enhances axillary shoot proliferation and recovery of transgenic cowpea plants. Plant Cell Tissue Organ Cult 110:77–91

    Article  CAS  Google Scholar 

  • Barna KS, Wakhlu AK (1993) Somatic embryogenesis and plant regeneration from callus culture of chickpea (Cicer arietinum L.). Plant Cell Rep 12:521–524

    Article  CAS  PubMed  Google Scholar 

  • Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Organ Cult 127:585–590

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vincent V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    Article  CAS  Google Scholar 

  • Biesaga-Kościelniak J, Kościelniak J, Janeczko A (2010) The impact of zearalenone and thidiazuron on indirect plant regeneration of oilseed rape and wheat. Acta Physiol Plant 32:1047–1053

    Article  Google Scholar 

  • Bohmer P, Meyer B, Jacobsen HJ (1995) Thidiazuron-induced high frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep 15:26–29

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Sarkar A, Das S (2006) Efficient and rapid in vitro plant regeneration system for Indian cultivars of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 86:117–123

    Article  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Desai SA, Khurana P (2007) Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum. Plant Cell Tissue Organ Cult 91:191–199

    Article  CAS  Google Scholar 

  • Chhabra G, Chaudhary D, Varma M, Sainger M, Jaiwal PK (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plant 14:347–353

    Article  CAS  Google Scholar 

  • Croser JS, Ahmad JF, Clarke HJ, Siddique KHM (2003) Utilisation of wild Cicer in chickpea improvement-progress, constraints, and prospects. Aust J Agric Res 54:429–444

    Article  Google Scholar 

  • Cruz de Carvalho MH, Van LEB, Zuilyfodil Y, Phamthi AT, Tran Thanh Van K (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci 159:223–232

    Article  CAS  PubMed  Google Scholar 

  • Daffala HH, Abdellatef E, Elhadi EA, Khalafalla MM (2011) Effect of growth regulators on in vitro morphogenic response of Boscia senegalensis (Pers.) Lam. Poir. using mature zygotic embryos explants. Biotechnol Res Int 10:1–8

    Article  Google Scholar 

  • Debnath SC (2005) Strawberry sepal: another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cell Dev Biol-Plant 41:671–676

    Article  Google Scholar 

  • Dewir YH, Chakrabarty D, Hahn EJ, Paek KY (2006) A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. In Vitro Cell Dev Biol-Plant 42:291–297

    Article  CAS  Google Scholar 

  • Din ARJM, Ahmad FI, Wagiran A, Samad AA, Rahmat Z, Sarmidi MR (2016) Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J Biol Sci 23:S69–S77

    Article  Google Scholar 

  • Faisal M, Anis M (2006) Thidiazuron induced high frequency axillary shoot multiplication in Psoralea corylifolia. Biol Plant 50:437–444

    Article  CAS  Google Scholar 

  • Faisal M, Ahmad N, Anis M (2005) Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue Organ Cult 80:187–190

    Article  CAS  Google Scholar 

  • Gatti I, Guindón F, Bermejo C, Espósito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Organ Cult 127:543–559

    Article  CAS  Google Scholar 

  • Graner EM, Oberschelp GPJ, Brondani GE, Batagin-Piotto KD, Almeida CV, Almeida M (2013) TDZ pulsing evaluation on the in vitro morphogenesis of peach palm. Physiol Mol Biol Plant 19:283–288

    Article  Google Scholar 

  • Gubbuk H, Pekmezci M (2006) In vitro propagation of banana (Musa spp.) using thidiazuron and activated charcoal. Acta Agric Scand B Soil Plant Sci 56:65–69

    CAS  Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotech 10:8984–9000

    Article  CAS  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant-tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Jacob C, Carrasco B, Schwember AR (2016) Advances in breeding and biotechnology of legume crops. Plant Cell Tissue Organ Cult 127:561–584

    Article  CAS  Google Scholar 

  • Jahan AA, Anis M, Aref IM (2011) Preconditioning of axillary buds in thidiazuron-supplemented liquid media improves in vitro shoot multiplication in Nyctanthes arbor-tristis L. Appl Biochem Biotechnol 163:851–859

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:714–719

    Article  Google Scholar 

  • Jayanand B, Sudarsanam G, Sharma KK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro germinated seedlings. In Vitro Cell Dev Biol-Plant 39:171–179

    Article  Google Scholar 

  • Jones MPA, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26:13–19

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Gupta AK, Kaur N, Sandhu JS (2012) High acid invertase activity for a prolonged period in developing seeds/podwall of wild chickpea is detrimental to seed filling. Indian J Exp Biol 50:735–743

    PubMed  Google Scholar 

  • Ket NV, Hahn EJ, Park SY, Chakarbarty D, Paek KY (2004) Micropropagation of an endangered orchid Anoectochilus formosanus. Biol Plant 48:339–344

    Article  Google Scholar 

  • Malik KA, Saxena PK (1992) Thidiazuron induces high frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust J Plant Physiol 19:731–740

    Article  CAS  Google Scholar 

  • Malik S, Sharma S, Sharma M, Ahuja PS (2010) Direct shoot regeneration from intact leaves of Arnebia euchroma (Royle) Johnston using thidiazuron. Cell Biol Int 34:537–542

    Article  CAS  PubMed  Google Scholar 

  • Mehta UJ, Barretto SM, Hazra S (2004) Effect of thidiazuron on germinating tamarind seedlings. In Vitro Cell Dev Biol-Plant 40:279–283

    Article  CAS  Google Scholar 

  • Mekala GK, Juturu VN, Mallikarjuna G, Kirti PB, Yadav SK (2016) Optimization of Agrobacterium-mediated genetic transformation of shoot tip explants of green gram (Vigna radiata (L.) Wilczek). Plant Cell Tissue Organ Cult 127:651–663

    Article  CAS  Google Scholar 

  • Mihaljevic S, Vrsek I (2009) In vitro shoot regeneration from immature seeds of Epimedium alpinum induced by thidiazuron and CPPU. Sci Hortic 120:406–410

    Article  CAS  Google Scholar 

  • Mukhtar S, Ahmad N, Khan MI, Anis M, Ibrahim MA (2012) Influencing micropropagation in Clitoria ternatea L. through the manipulation of TDZ levels and use of different explant types. Physiol Mol Biol Plant 18:381–386

    Article  CAS  Google Scholar 

  • Murthy BNS, Victor J, Singh RP, Fletcher RA, Saxena PK (1996) In vitro regeneration of chickpea (Cicer arietinum L.) stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Regul 19:233–240

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol-Plant 34:267–275

    Article  CAS  Google Scholar 

  • Nguyen AH, Hodgson LM, Erskine W, Barker SJ (2016) An approach to overcoming regeneration recalcitrance in genetic transformation of lupins and other legumes. Plant Cell Tissue Organ Cult 127:623–635

    Article  CAS  Google Scholar 

  • Ochatt S, Conreux C, Smýkalová I, Smýkal P, Mikić A (2016) Developing biotechnology tools for ‘beautiful’ vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Plant Cell Tissue Organ Cult 127:637–648

    Article  Google Scholar 

  • Ouyang Y, Chen Y, Lü J, Jaime A, da Silva T, Zhang X, Mab G (2016) Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia W.T. Wang. Sci Rep 6:24662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podwyszynska M, Novák O, Doležal K, Strnad M (2014) Endogenous cytokinin dynamics in micropropagated tulips during bulb formation process influenced by TDZ and iP pre-treatment. Plant Cell Tissue Organ Cult 119:331–346

    Article  CAS  Google Scholar 

  • Polowick PL, Baliski DS, Mahon JD (2004) Agrobacterium tumefaciens mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. Plant Cell Rep 23:485–491

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Ramachandran A, RanjithaKumari BD (2009) Rooting and shooting: dual function of thidiazuron in in vitro regeneration of soybean (Glycine max. L). Acta Physiol Plant 31:1213–1217

    Article  CAS  Google Scholar 

  • Rizvi SMH, Singh RP (2000) In-vitro plant regeneration from immature leaflet-derived callus cultures of Cicer arietinum L. via organogenesis. Plant Cell Biotechnol Mol Biol 1:109–114

    Google Scholar 

  • Shaik NM, Arha M, Nookaraju A, Gupta SK, Srivastava S, Yadav AK, Kulkarni PS, Abhilash OU, Vishwakarma RK, Singh S (2009) Improved method of in vitro regeneration in Leucaena leucocephala—a leguminous pulpwood tree species. Physiol Mol Biol Plant 15:311–318

    Article  Google Scholar 

  • Sharma R, Shahzad A (2008) Thidiazuron (TDZ) Induced regeneration from cotyledonary node explant of Abelmoschus moschatus Medik. L., (a valuable medicinal plant). World J Agr Sci 4:449–452

    Google Scholar 

  • Sharma VK, Hansch R, Mendel RR, Schulze J (2005) Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long-term retention of morphogenecity using meristemic shoot segments. Plant Breed 124:242–246

    Article  CAS  Google Scholar 

  • Siddique I, Anis M (2007) In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.): a medicinal plant. Acta Physiol Plant 29:233–238

    Article  CAS  Google Scholar 

  • Singh V, Chauhan NS, Singh M, Idris A, Madanala R, Pande V, Mohanty CS (2014) Establishment of an efficient and rapid method of multiple shoot regeneration and a comparative phenolics profile in in vitro and greenhouse-grown plants of Psophocarpus tetragonolobus (L.) DC. Plant Signal Behav 9:e970443

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas TD (2003) Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biol Plant 46:529–533

    Article  CAS  Google Scholar 

  • Tulac S, Leljak-Levanic D, Krsnik-Rasol M, Jelaska S (2002) Effect of BAP, TDZ and CPPU on multiple shoot formation in pea (Pisum sativum L.) in culture in vitro. Acta Biol Cracovien 44:161–168

    Google Scholar 

  • Upreti J, Dhar U (1996) Micropropagation of Bauhinia vahlii Wight & Arnott—a leguminous liana. Plant Cell Rep 16:250–254

    CAS  PubMed  Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12:202–210

    Article  PubMed  Google Scholar 

  • Zatloukal M, Gemrotov M, Dolezal K, Havlıcek L, Spıchal L, Strnad M (2008) Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg Med Chem 16:9268–9275

    Article  CAS  PubMed  Google Scholar 

  • Zayed EMM, Abdelbar OH (2015) Morphogenesis of immature female inflorescences of date palm in vitro. Ann Agric Sci 60:113–120

    Google Scholar 

  • Zhihui S, Tzitzikas M, Raemakers K, Zhengqiang M, Visser R (2009) Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell Dev Biol-Plant 45:776–782

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Agriculture Research Station (ARS) Durgapura, Jaipur, India for the supply of different chickpea genotypes. We are thankful to Dr. Vinay K. Cheruvu, Department of Biostatistics, Kent State University, USA, for helping in statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

PK, SY and SS conceived the idea. PK conducted the experiments with strategic experimental input from LSPT. PK and SY carried out data analysis with the input from LSPT. PK, SY and LSPT wrote the manuscript.

Corresponding authors

Correspondence to Saurabh Yadav or Lam Son Phan Tran.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Singh, S., Yadav, S. et al. Pretreatment of seeds with thidiazuron delimits its negative effects on explants and promotes regeneration in chickpea (Cicer arietinum L.). Plant Cell Tiss Organ Cult 133, 103–114 (2018). https://doi.org/10.1007/s11240-017-1365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1365-6

Keywords

Navigation