Skip to main content
Log in

Ectopic expression of Limonium bicolor (Bag.) Kuntze DREB (LbDREB) results in enhanced salt stress tolerance of transgenic Populus ussuriensis Kom

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

High salinity is one of the most common abiotic stresses that plants have to confront, and selecting salt-tolerant plants is becoming a very important task in breeding. In this study, non-transgenic (NT) and three LbDREB-transgenic Populus ussuriensis Kom. (Dr22, Dr8, and Dr2) lines were treated with 150 mM NaCl. The salt tolerance of NT, Dr2, Dr8, and Dr22 were evaluated and compared. Phenotypic observation, chlorophyll content detection and leaf salt injury index calculation suggested NT exhibited more severe salt injury symptoms and weaker photosynthetic capacity than Dr2, Dr8, and Dr22. LbDREB gene exhibited opposite temporal expression patterns with no apical meristem (NAM), trihelix transcription factor (GT-1) and WRKY transcription factor 70 (WRKY70), and consistent expression patterns with Cu–Zn superoxide dismutase and peroxidase-PO1 genes, in Dr2, Dr8, and Dr22 under salt stress. The superoxide dismutase and peroxidase activities of transgenic lines were higher than NT plants during the salt stress treatment. Malonaldehyde accumulation in NT leaves was more significant than in transgenic leaves, while proline accumulation in NT leaves was much less than that in transgenic leaves under salt stress. The root to shoot ratios were significantly increased in Dr2, Dr8, and Dr22 plants, but were slightly decreased in NT plants, 12 days after salt stress treatment. The relative water content of NT leaves decreased more than transgenic leaves, meanwhile, the relative electrolytic leakage of NT leaves increased more significantly than transgenic leaves after salt stress. In summary, Dr2, Dr8, and Dr22 exhibited stronger salt stress tolerance than NT. The transgenic lines Dr2, Dr8, and Dr22 can serve as alternative salt-tolerant germplasm resources in P. ussuriensis breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 4(5):369–374

    Article  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Dabi M, Sapara KK, Joshi PS, Agarwal PK (2016) Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling. Front Plant Sci 7:1541. doi:10.3389/fpls.2016.01541

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abdel LA, Hashem A, Abd AE, Gucel S, Tran LS (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347. doi:10.3389/fpls.2016.00347

    PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015) Lipids and proteins-major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22(6):4099–4121

    Article  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  CAS  PubMed  Google Scholar 

  • Ban Q, Liu G, Wang Y (2011) A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J Plant Physiol 168(5):449–458

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29(7):1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Jbir R, Charfeddine S, Saidi MN, Gargouri-Bouzid R (2015) The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress. Plant Cell Tissue Organ Cult 121(1):237–248

    Article  CAS  Google Scholar 

  • Boyce JM, Knight H, Deyholos M, Openshaw MR, Galbraith DW, Warren G, Knight MR (2003) The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant J 34(4):395–406

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42(2):387–396

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12(2):317–333

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu L, Wang L, Wang S, Cheng X (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129(2):263–273

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Huang Q, Zhang B, Ding C, Su X (2014) Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra). PLoS ONE 9(6):e98334. doi:10.1371/journal.pone.0098334

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54(9):374–381

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Luking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30(8):1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51(1):463–499

    Article  CAS  PubMed  Google Scholar 

  • Jin CL (2011) Establishment of genetic transformation system of Populus ussuriensis Kom. and transferred by LbDREB. Northeast Forestry University (Masters Dissertation)

  • Jube S, Borthakur D (2009) Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell Tissue Organ Cult 96(3):325–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Boon NJ, Webb AAR, Tanaka RJ (2016) Synergistic activation of RD29A via integration of salinity stress and abscisic acid in Arabidopsis thaliana. Plant Cell Physiol 57(10):2147–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yue J, Wu X, Xu C, Yu J (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65(18):5415–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Song Y, Xu B, Xie J, Zhang D (2017) Poplar CBF1 functions specifically in an integrated cold regulatory network. Tree Physiol 37(1):98–115

    CAS  PubMed  Google Scholar 

  • Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T (2016) Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89(3):510–526

    Article  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114(2):591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆C T method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Poulos TL (2007) Ascorbate Peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, pp 87–100

    Chapter  Google Scholar 

  • Miyazaki Y, Abe H, Takase T, Kobayashi M, Kiyosue T (2015) Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana. Plant Cell Rep 34(5):843–852

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano T (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nietsch J, Brügmann J, Becker D, Fladung M (2017) Old methods rediscovered: application and improvement of two direct transformation methods to hybrid poplar (Populus tremula × P. alba). Plant Cell Tiss Organ Cult 130(1):183–196

    Article  CAS  Google Scholar 

  • Nole-Wilson S, Krizek BA (2000) DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res 28(21):4076–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135(4):2150–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sazegari S, Niazi A, Ahmadi FS (2015) A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation 11(2):101–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109–119

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y (2013) Salt stress or salt shock: which genes are we studying? J Exp Bot 64(1):119–127

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Ate-S ON, A Nchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    Article  CAS  PubMed  Google Scholar 

  • Su XH, Huang QJ, Zhang XH, Zhang QW, Wang B, Yao SZ (2001) Gene resource research on Populus ussuriensis Kom. in China. For Res 14(5):472–478

    Google Scholar 

  • Sumithra K, Jutur PP, Carmel BD, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50(1):11–22

    Article  CAS  Google Scholar 

  • Taulavuori E, Hellstrom EK, Taulavuori K, Laine K (2001) Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J Exp Bot 52(365):2375–2380

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37(3):959–967

    Article  CAS  PubMed  Google Scholar 

  • Tian QQ, Chen JH, Wang D, Wang HL, Liu C, Wang S, Xia XL, Yin WL (2017) Overexpression of a Populus euphratica CBF4 gene in poplar confers tolerance to multiple stresses. Plant Cell Tissue Organ Cult 128(2):391–407

    Article  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97(21):11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valvekens D, Montagu MV, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85(15):5536–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang RG, Chen SL, Liu LY, Hao ZY, Wong HJ, Li H et al (2005) Genotypic differences in antioxidative ability and salt tolerance of three poplars under salt stress. J Beijing For Univ 27(3):46–52

    Google Scholar 

  • Wang HL, Tao JJ, He LG, Zhao YJ, Xu M (2009) cDNA cloning and expression analysis of a Poncirus trifoliata CBF gene. Biol Plant 53(4):625–630

    Article  CAS  Google Scholar 

  • Wang Z, Liu J, Guo H, He X, Wu W, Du J, Zhang Z, An X (2014) Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis. Plant Physiol Bioch 83:107–116

    Article  CAS  Google Scholar 

  • Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q (2016) A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiol Plant 158(1):45–64

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016) Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Bioch 104:17–28

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep 29(3):211–221

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015) The SsDREB transcription tactor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genom. doi:10.1155/2015/875497

    Google Scholar 

  • Zhang YN, Wang Y, Sa G, Zhang YH, Deng JY, Deng SR, Wang MJ, Zhang HL, Yao J, Ma XY, Zhao R, Zhou XY, Lu CF, Lin SZ, Chen SL (2017) Populus euphratica J3 mediates root K+/Na+ homeostasis by activating plasma membrane H+-ATPase in transgenic Arabidopsis under NaCl salinity. Plant Cell Tissue Organ Cult 131(1):75–88

    Article  CAS  Google Scholar 

  • Zhao H, Wang S, Chen S, Jiang J, Liu G (2015) Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii × Populus nigra. Gene 565(1):130–139

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Jiang J, Li K, Liu G (2017) Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. Tree Physiol 37(6):827–844

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Li YL (2010) Expression pattern of PtCBF5, a CBF homologue gene encoding transcription activator in Populus tomentosa. Sci Silv Sin 46(4):58–63

    Google Scholar 

  • Zhou M, Ma J, Zhao Y, Wei Y, Tang Y, Wu Y (2012) Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506(1):10–17

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong J, Li X, Zhou Y, Wang F, Wang N, Dong Y, Yuan Y, Chen H, Liu X, Yao N, Li H (2016) The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int J Mol Sci 17(4):611

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High-Tech Research and Development Program of China, 863 Program (Key Stress-responsive Genes Identification and Molecular Breeding Technology Research in Woody Plants, Grant No. 2013AA102701).

Author information

Authors and Affiliations

Authors

Contributions

HZ and KL conceived and designed the experiments. HZ, ML, YJ, JX and JJ performed the experiments. HZ and XZ analyzed the data. KL contributed reagents/materials/analysis tools. HZ wrote the paper and XZ critical read the manuscript.

Corresponding author

Correspondence to Kailong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Paula M. Pijut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhao, X., Li, M. et al. Ectopic expression of Limonium bicolor (Bag.) Kuntze DREB (LbDREB) results in enhanced salt stress tolerance of transgenic Populus ussuriensis Kom. Plant Cell Tiss Organ Cult 132, 123–136 (2018). https://doi.org/10.1007/s11240-017-1317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1317-1

Keywords

Navigation