Skip to main content
Log in

In vitro clonal propagation and stable cryopreservation system for Platycladus orientalis via somatic embryogenesis

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

An Erratum to this article was published on 22 September 2017

This article has been updated

Abstract

Platycladus orientalis is a widespread conifer, which is native in eastern Asia, and has recently attracted much attention due to its ornamental value for landscape and gardens. However, native P. orientalis populations have been in decline over the past century. Here, we established an in vitro propagation and cryopreservation system for P. orientalis via somatic embryogenesis (SE). Whole megagametophytes with four development stages (Early embryogeny: E1 and late embryogeny: L1, L2, and L3) of zygotic embryos from immature P. orientalis cones were used as initial explants and cultured on three different basal media such as initiation medium (IM), Litvay (LV), and Schenk and Hildebrandt (SH). Both the developmental stage of zygotic embryos and kind of basal medium had a significant effect on embryogenesis induction with IM (P < 0.001, respectively). The highest frequency of embryogenic callus induction was obtained in megagametophytes with zygotic embryos at L2 stage, which ranged as high as 30%. The maturation medium containing IM basal salts, vitamins and amino acids, 15 g l−1 abscisic acid (ABA), 50 g l−1 maltose, and 100 g l−1 polyethylene glycol 4000 (PEG) was found to be the suitable medium for production of somatic embryos. The frequency of somatic embryo formation from both non-cryopreserved and cryopreserved cell lines was also tested. There were no statistical differences on the production of somatic embryos between non-cryopreserved and cryopreserved cells (P = 0.523). Genetic fidelity of the plantlets regenerated from non-cryopreserved and cryopreserved embryogenic cell lines was assessed by both random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analysis. There was no genetic instability in the regenerated plantlets from cryopreserved embryogenic cell lines. Both the SE protocol and cryopreservation protocols described here have the potential to contribute the conservation and clonal propagation of P. orientalis germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 22 September 2017

    In the original publication, the concentration of abscisic acid mentioned in the Abstract and in the Materials and Methods was incorrect. It should have read 15 mg l−1.

Abbreviations

ABA:

Abscisic acid

AC:

Activated carbon

BA:

Benzylamino purine

IM:

Initiation medium

MIM:

Maturation medium

GIM:

Germination medium

PGR:

Plant growth regulator

2,4-D:

2,4-Dichlorophenoxyacetic acid

RAPD:

Random amplified polymorphic DNA

ISSR:

Inter simple sequence repeat

CP:

Cryoprotectant

References

  • Ahn CH, Kim YS, Lim S, Yi JS, Choi YE (2011) Random amplified polymorphic DNA (RAPD) analysis and RAPD-derived sequence characterized amplified regions (SCAR) marker development to identify Chinese and Korean ginseng. J Med Plants Res 5:4487–4492

    CAS  Google Scholar 

  • Ahn CH, Tull R, Montello PM, Merkle SA (2017) A clonal propagation system for Atlantic white cedar (Chamaecyparis thyoides) via somatic embryogenesis without the use of plant growth regulators. Plant Cell Tissue Organ Cult 130:91–101

    Article  CAS  Google Scholar 

  • Arakawa T, Carpenter JF, Kita YA, Crowe JH (1990) The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27:401–415

    Article  CAS  Google Scholar 

  • Aronen TS, Krajnakova J, Häggman HM, Ryynänen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    Article  CAS  Google Scholar 

  • Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24:372–383

    Article  Google Scholar 

  • Barberini S, Danti R, Lambardi M (2016) Somatic plant regeneration from selected common cypress (Cupressus sempervirens L.) clones resistant to the bark canker disease. Plant Cell Tissue Organ Cult 124:393–403

    Article  Google Scholar 

  • Bomal C, Tremblay FM (2000) Dried cryopreserved somatic embryos of two Picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann Bot 86:177–183

    Article  Google Scholar 

  • Cyr DR, Lazaroff WR, Grimes SMA, Quan G, Bethune TD, Dunstan DI, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep 13:574–577

    Article  CAS  PubMed  Google Scholar 

  • De Verno LL, Park YS, Bonga JM, Barret JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench) Voss.]. Plant Cell Rep 18:948–953

    Article  Google Scholar 

  • Debnath SC (2009) Development of ISSR markers for genetic diversity studies in Vaccinium angustifolium. Nord J Bot 27:141–148

    Article  Google Scholar 

  • Dussert S, Mauro MC, Engelmann F (1992) Cryopreservation of grape embryogenic cell suspensions 2: influence of post-thaw conditions and application to different strains. Cryo-letters 13:15–22

    Google Scholar 

  • Engelmann F (1992) Effects of freezing in liquid nitrogen on the properties of a soybean (Glycine max L. var. acme) callus strain used as a bioassay for cytokinin activity. Cryo-letters 13:331–336

    Google Scholar 

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179

    Article  CAS  PubMed  Google Scholar 

  • Hakman I, Fowke LC, von Arnold S, Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Sci 38:53–59

    Article  Google Scholar 

  • Helmersson A, von Arnold S (2009) Embryogenic cell lines of Juniperus communis; easy establishment and embryo maturation, limited germination. Plant Cell Tissue Organ Cult 96:211–217

    Article  Google Scholar 

  • Hirano T, Godo T, Mii M, Ishikawa K (2005) Cryopreservation of immature seeds of Bletilla striata by vitrification. Plant Cell Rep 23:534–539

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Sun Y, Wu B, Duan H, Zheng H, Hu D, Lim H, Tong Z, Xu J, Li Y (2017) Somatic embryogenesis of immature Cunninghamia lanceolata (Lamb.) Hook zygotic embryos. Sci Rep 7:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Suh WS, Choi SU, Kim KH, Lee KR (2014) Two new diterpenoids from Thuja orientalis and their cytotoxicity. Bull Korean Chem Soc 35:2855–2858

    Article  CAS  Google Scholar 

  • Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, Lelu-Walter M (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell Dev Biol-Plant 45:20–33

    Article  Google Scholar 

  • Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–26

    Article  PubMed  Google Scholar 

  • Lambardi M, Harry IS, Menabeni D, Thorpe TA (1995) Organogenesis and somatic embryogenesis in Cupressus sempervirens. Plant Cell Tiss Org Cult 40:179–182

    Article  Google Scholar 

  • Lambardi M, Lachance D, Séguin A, Charest PJ (1998) Evaluation of microprojectile-mediated DNA delivery and reporter genes for genetic transformation of the Mediterranean cypress (Cupressus sempervirens L.). Plant Cell Rep 18 (3–4):198–202

    Article  CAS  Google Scholar 

  • LePage BA (2003) A new species of Thuja (Cupressaceae) from the late Cretaceous of Alaska: implications of being evergreen in a polar environment. Am J Bot 90:167–174

    Article  PubMed  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    Article  CAS  PubMed  Google Scholar 

  • Marum L, Rocheta M, Maroco J, Oliveira MM, Miquel C (2009) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682

    Article  CAS  PubMed  Google Scholar 

  • Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant Biotechnol 17:281–296

    Article  CAS  Google Scholar 

  • Maruyama E, Hosoi Y, Ishii K (2002) Somatic embryogenesis in Sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J For Res 7:23–34

    Article  CAS  Google Scholar 

  • Maruyama E, Ishii K, Hosoi Y (2005) Efficient plant regeneration of Hinoki cypress (Chamaecyparis obtusa) via somatic embryogenesis. J For Res 10:73–77

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:472–497

    Article  Google Scholar 

  • Nairn BJ (1992) Commercial micropropagation of radiate pine. In: Ahuja MR (ed) Micropropagation of woody plants. Kluwer, Dordrecht, pp 383–394

    Google Scholar 

  • Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). In: The role of biotechnology for the characterization and conservation of crop, forest, animal and fishery genetic resources in developing countries. FAO, Turin, pp 43–54

    Google Scholar 

  • Quoirin M, Lepoivre P (1977) Improved media for in vitro culture of Prunus sp. Acta Hortic 78:437–442

    Article  Google Scholar 

  • Ramarosandratana A, Harvengt L, Bouvet A, Calvayrac R, Pâques M (2001) Effects of carbohydrate source, polyethylene glycol and gellan gum concentration on embryonal suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos. In Vitro Cell Dev Biol-Plant 37:29–34

    Article  CAS  Google Scholar 

  • Salaj T, Matušíková I, Swennen R, Panis B, Salaj J (2012) Long-term maintenance of Pinus nigra embryogenic cultures through cryopreservation. Acta Physiol Plant 34:227–233

    Article  Google Scholar 

  • Sallandrouze A, Faurobert M, El Maataoui M, Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20(4–5):1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Smith DR (1996) Growth Medium. U.S. Patent No. 5,565,355

  • Taniguchi T, Kurita M, Itahana N, Kondo T (2004) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). Plant Cell Rep 23:26–31

    Article  CAS  PubMed  Google Scholar 

  • Tukey JW (1953) Some selected quick and easy methods of statistical analysis. Trans N Y Acad Sci 16:88–97

    Article  CAS  PubMed  Google Scholar 

  • von Arnold S, Eriksson T (1981) In vitro studies of adventitious shoot formation in Pinus contorta. Can J Bot 59:870–874

    Article  Google Scholar 

  • Zhang NN, Park DK, Park HJ (2013) Hair growth-promoting activity of hot water extract of Thuja orientalis. BMC Complement Altern Med 13:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Lou A (2013) Old-growth Platycladus orientalis as a resource for reproductive capacity and genetic diversity. PLoS ONE 8:e56489. Doi:10.1371/journal.pone.0056489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Post-Genome Multi-Ministry Genome Project (S111414L070110), and a 2014 research grant from Kangwon National University (C1010841-01-01).

Author information

Authors and Affiliations

Authors

Contributions

YEC designed all experiments and wrote drafts of the manuscript. CHA conducted the experiments and data analysis, took photos and wrote the manuscript.

Corresponding author

Correspondence to Yong-Eui Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Qiao-Chun Wang.

An erratum to this article is available at https://doi.org/10.1007/s11240-017-1307-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, CH., Choi, YE. In vitro clonal propagation and stable cryopreservation system for Platycladus orientalis via somatic embryogenesis. Plant Cell Tiss Organ Cult 131, 513–523 (2017). https://doi.org/10.1007/s11240-017-1301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1301-9

Keywords

Navigation