Skip to main content

Advertisement

Log in

A clonal propagation system for Atlantic white cedar (Chamaecyparis thyoides) via somatic embryogenesis without the use of plant growth regulators

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Atlantic white cedar (AWC; Chamaecyparis thyoides), an aromatic evergreen conifer native to swamps and bogs along the Atlantic and Gulf coasts of the eastern United States was once an important species for timber production due to its durable wood. However, native populations have declined over the past two centuries. We established an in vitro propagation system for AWC via somatic embryogenesis (SE) without the use of plant growth regulators (PGRs). Whole megagametophytes with zygotic embryos from immature AWC cones were cultured on a modified half-strength embryo maturation (EM) medium with three different PGR treatments, including one devoid of PGRs. Both PGR treatment and cone collection date had significant effects on embryogenesis induction, with EM with no PGRs giving the highest embryogenesis induction, which ranged as high as 27%. We also conducted experiments to determine the effects of activated carbon (AC) and abscisic acid (ABA) in the maturation medium on production of mature somatic embryos. AC significantly affected this variable, with 2 g l−1 producing more embryos than 0 g l−1. Application of exogenous ABA not only failed to improve production of mature somatic embryos, the highest level tested (200 µM), apparently lowered production of mature embryos compared to the 0 ABA control. The highest numbers of mature somatic embryos per ml of plated embryogenic suspension (32–37) were produced on medium with 2 g l−1 AC and levels of ABA at 100 µM or lower. The SE system described here has the potential to contribute the restoration of Atlantic white cedar to its native habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AC:

Activated carbon

AWC:

Atlantic white cedar

BA:

Benzylamino purine

EM:

Embryo maturation medium of Maruyama et al. (2000)

IAA:

Indoleacetic acid

PGR:

Plant growth regulator

2,4-D:

2,4-Dichlorophenoxyacetic acid.

References

  • Andrade GM, Merkle SA (2005) Enhancement of American chestnut somatic seedling production. Plant Cell Rep 24:326–334

    Article  CAS  PubMed  Google Scholar 

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Organ Cult 35:1–35

    Article  CAS  Google Scholar 

  • Barberini S, Danti R, Lambardi M (2016) Somatic plant regeneration from selected common cypress (Cupressus sempervirens L.) clones resistant to the bark canker disease. Plant Cell Tiss Organ Cult 124:393–403

    Article  Google Scholar 

  • Bettinger P, Clutter M, Siry J, Kane M, Pait J (2009) Broad implications of southern pine clonal forestry on planning and management of forests. Int For Rev 11:331–345

    Google Scholar 

  • Buchholz JT (1932) The embryogeny of Chamaecyparis obtusa. Am J Bot 19(3):230–238

    Article  Google Scholar 

  • Fraga HPF, Vieira LN, Puttkammer CC, Santos HP, Garighan JA, Guerra MP (2016) Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl. Plant Sci 253:98–106

    Article  CAS  PubMed  Google Scholar 

  • Frost CC (1987) Historical overview of Atlantic white cedar in the Carolinas. In Ladermann AD (ed) Atlantic white cedar wetlands. Westview Press, Boulder, pp 257–264

    Google Scholar 

  • Guevin TG, Kirby EG (1997) Induction of embryogenesis in cultured mature zygotic embryos of Abies fraseri (Pursh) Poir. Plant Cell Tiss Organ Cult 49:219–222

    Article  CAS  Google Scholar 

  • Gupta PK, Holmstrom D (2005) Double staining technology for distinguishing embryogenic cultures. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 573–575

    Chapter  Google Scholar 

  • Gupta PK, Timmis R (2005) Mass propagation of conifer trees in liquid cultures—progress toward commercialization. Plant Cell Tiss Organ Cult 81:339–346

    Article  Google Scholar 

  • Hakman I, Fowke LC, von Arnold S, Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Sci 38:53–59

    Article  Google Scholar 

  • Hardin JW, Leopold DJ, White FM (2001) Harlow and Harrar’s Textbook of dendrology, 9th edn. McGraw-Hill, Boston

    Google Scholar 

  • Hazubska-Przybył T, Chmielarz P, Michalak M, Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tiss Org Cult 102:35–44

    Article  Google Scholar 

  • Hazubska-Przybył T, Chmielarz P, Michalak M, Dering M, Bojarczuk K (2013) Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell Tiss Organ Cult 113:303–313

    Article  Google Scholar 

  • Hazubska-Przybył T, Kalemba EM, Ratajczak E, Bojarczuk K (2016) Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiol Plant 38:59

    Article  Google Scholar 

  • Hinesley LE, Blazich FA, Snelling LK (1994) Propagation of Atlantic white cedar by stem cuttings. HortScience 29:217–219

    Google Scholar 

  • Igasaki T, Sato T, Akashi N, Mohri T, Maruyama E, Kinoshita I, Walter C, Shinohara K (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Rep 22:239–243

    Article  CAS  PubMed  Google Scholar 

  • Jull LG, Blazich FA (2000) Seed germination of selected provenances of Atlantic white cedar as influenced by stratification, temperature, and light. HortScience 35:132–135

    Google Scholar 

  • Kim YW, Moon HK (2014) Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine (Pinus densiflora). Plant Biotechnol Rep 8:259–266

    Article  Google Scholar 

  • Kirkman LK, Brown CL, Leopold DJ (2007) Native trees of the southeast. Timber Press, Portland

    Google Scholar 

  • Krajňáková J, Bertolini A, Gömöry D, Vianello A, Häggman H (2013) Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic tissue. In Vitro Cell Dev Biol-Plant 49:560–571

    Article  Google Scholar 

  • Label P, Lelu M-A (1994) Influence of exogenous abscisic acid on germination and plantlet conversion frequencies of hybrid larch somatic embryos (Larix × leptoeuropaea). Plant Growth Regul 15:175–182

    Article  CAS  Google Scholar 

  • Lelu M-A, Bastien C, Drugeault A, Gouez M-L, Klimaszewska K (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol Plant 105:719–728

    Article  CAS  Google Scholar 

  • Liao YK, Liao CK, Ho YL (2008) Maturation of somatic embryos in two embryogenic cultures of Picea morrisonicola Hayata as affected by alternation of endogenous IAA content. Plant Cell Tiss Organ Cult 93:257–268

    Article  CAS  Google Scholar 

  • Little S (1950) Ecology and silviculture of white-cedar and associated hardwoods in southern New Jersey. Yale Univ School For Bull 56:1–103

    Google Scholar 

  • Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant Biotechnol 17:281–296

    Article  CAS  Google Scholar 

  • Maruyama E, Hosoi Y, Ishii K (2002) Somatic embryogenesis in Sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J For Res 7:23–34

    Article  CAS  Google Scholar 

  • Maruyama E, Ishii K, Hosoi Y (2005) Efficient plant regeneration of Hinoki cypress (Chamaecyparis obtusa) via somatic embryogenesis. J For Res 10:73–77

    Article  CAS  Google Scholar 

  • Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 155–203

    Chapter  Google Scholar 

  • Merkle SA, Montello PM, Reece HM, Kong L (2014) Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration. Trees Struct Funct 28:1767–1776

    Article  Google Scholar 

  • Montalbán IA, De Diego N, Moncaleán P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees Struct Funct 24:1061–1071

    Article  Google Scholar 

  • Mylecraine KA, Kuser JE, Smouse PE, Zimmermann GL (2004) Geographic allozyme variation in Atlantic white-cedar, Chamaecyparis thyoides (Cupressaceae). Can J For Res 34:2443–2454

    Article  CAS  Google Scholar 

  • Mylecraine KA, Kuser JE, Zimmermann, GL Smouse PE (2005) Rangewide provenance variation in Atlantic white-cedar (Chamaecyparis thyoides): early survival and growth in New Jersey and North Carolina plantations. For Ecol Manag 216:91–104

    Article  Google Scholar 

  • Nørgaard JV, Krogstrup P (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana LK. Plant Cell Rep 9:509–513

    Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in vitro culture-a review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Pullman GS, Gupta PK (1991) Method for reproducing coniferous plants by somatic embryogenesis using adsorbent materials in the development stage. US Patent No. 5034326

  • Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. In: TAPPI R & D Division Biological Sciences Symposium, TAPPI, Minneapolis, MN, USA, pp 31–34, October 3–6, 1994

  • Pullman GS, Namjoshi K, Zhang Y (2003) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24:271–279

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Olson K, Fischer T, Egertsdotter U, Frampton J, Bucalo K (2016) Fraser fir somatic embryogenesis: high frequency initiation, maintenance, embryo development, germination and cryopreservation. New For 47:453–480

    Article  Google Scholar 

  • Rai MK, Shehawat NS, Harish Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Organ Cult 106:179–190

    Article  CAS  Google Scholar 

  • Salaj T, Matušíková I, Swennen R, Panis B, Salaj J (2012) Long-term maintenance of Pinus nigra embryogenic cultures through cryopreservation. Acta Physiol Plant 34:227–233

    Article  Google Scholar 

  • Salajova T, Jasik J, Kormutak A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies munidica). Plant Cell Rep 15:527–530

    CAS  PubMed  Google Scholar 

  • Taniguchi T, Kurita M, Itahana N, Kondo T (2004) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). Plant Cell Rep 23:26–31

    Article  CAS  PubMed  Google Scholar 

  • Van Winkle S, Johnson S, Pullman GS (2003) The impact of Gelrite and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 21:1175–1182

    Article  PubMed  Google Scholar 

  • Von Aderkas P, Label P, Lelu M-A (2002a) Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol 22:431–434

    Article  Google Scholar 

  • Von Aderkas P, Rohr R, Sundberg B, Gutmann M, Dumont-BéBoux N, Lelu M-A (2002b) Abscisic acid and its influence on development of the embryonal root cap, storage product and secondary metabolite accumulation in hybrid larch somatic embryos. Plant Cell Tiss Organ Cult 69:111–120

    Article  Google Scholar 

  • Vondrakova Z, Eliasova K, Fischerova L, Vagner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6:587–596

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Mclntire-Stennis funds allocated to the Warnell School of Forestry and Natural Resources and the USDA Forest Service, Southern Region National Forest System Genetics Program. We would like to thank Dr. Robert Jetton (Camcore, NC State University) and Bill Lott (Thompson Mills Forest State Arboretum of Georgia) for helping us obtain Atlantic white cedar material for culture initiation. We also thank Heather Gladfelter and Dr. Gerald Pullman for technical assistance and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Merkle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, CH., Tull, A.R., Montello, P.M. et al. A clonal propagation system for Atlantic white cedar (Chamaecyparis thyoides) via somatic embryogenesis without the use of plant growth regulators. Plant Cell Tiss Organ Cult 130, 91–101 (2017). https://doi.org/10.1007/s11240-017-1206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1206-7

Keywords

Navigation