Skip to main content
Log in

Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.)

  • Embryogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Pinus pinaster (Ait.) somatic embryogenesis (SE) has been developed during the last decade, and its application in tree improvement programs is underway. Nevertheless, a few more or less important problems still exist, which have an impact on the efficiency of specific SE stages. One phenomenon, which had been observed in embryogenic tissue (embryonal mass, EM) initiated from immature seed, has been the loss of the ability to produce mature somatic embryos after the tissue had been cultured for several months. In an attempt to get insight into the differences between young cultures of EM (3-mo-old since the first subculture) of P. pinaster that produced mature somatic embryos and the same lines of significantly increased age (18-mo-old, aged EM) that stopped producing mature somatic embryos, we analyzed in both types of materials the levels of endogenous hormones, polyamines, the global DNA methylation, and associated methylation patterns. In addition, we included in the analysis secondary EM induced from mature somatic embryos. The analysis showed that the two tested genotypes displayed inconsistent hormonal and polyamine profiles in EM cultures of a similar phenotype and that it might be difficult to attribute one specific profile to a specific culture phenotype among genotypes. Experiments were also undertaken to determine if the global DNA methylation and/or the resulting methylation pattern could be manipulated by treatment of the cultures with a hypomethylating drug 5-azacytidine (5-azaC). An aged EM was exposed to different concentrations and durations of 5-azaC, and its response in culture was established by fresh mass increases and somatic embryo maturation potential. All of the analyses are new in maritime pine, and thus, they provide the first data on the biochemistry of EM in this species related to embryogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baurens, F. C.; Nicolleau, J.; Legavre, T.; Verdeil, J. L.; Monteuuis, O. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol. 24: 401–407; 2004.

    PubMed  CAS  Google Scholar 

  • Bercetche, J.; Pâques, M. Somatic embryogenesis in maritime pine (Pinus pinaster). In: Jain S. M.; Gupta P. K.; Newton R. J. (eds) Somatic embryogenesis in woody plants, Vol. 3. Gymnosperms. Kluwer, Dordrecht, pp 221–242; 1995.

    Google Scholar 

  • Breton, D.; Harvengt, L.; Trontin, J.-F.; Bouvet, A.; Favre, J.-M. High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in Maritime pine. In Vitro Cell. Dev. Biol.- Plant 41: 494–504; 2005 doi:10.1079/IVP2005671.

    Article  CAS  Google Scholar 

  • Cervera, M. T.; Ruiz-García, L.; Martínez-Zapater, J. M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics 268: 543–552; 2002 doi:10.1007/s00438-002-0772-4.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty, D.; Yu, K. W.; Paek, K. Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci. 165: 61–68; 2003 doi:10.1016/S0168-9452(03)00127-4.

    Article  CAS  Google Scholar 

  • Charbit, E.; Legavre, T.; Lardet, L.; Bourgeois, E.; Ferrière, N.; Carron, M. P. Identification of differentially expressed cDNA sequences and histological characteristics of Hevea brasiliensis calli in relation to their embryogenic and regenerative capacities. Plant Cell Rep. 22: 539–548; 2004 doi:10.1007/s00299-003-0737-z.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, E. J.; Genger, R. K.; Peacock, W. J.; Dennis, E. S. DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 223–247; 1998 doi:10.1146/annurev.arplant.49.1.223.

    Article  PubMed  CAS  Google Scholar 

  • Fraga, M.; Rodríguez, R.; Cañal, M. J. Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis 21: 2990–2994; 2000 doi:10.1002/1522-2683(20000801)21:14<2990::AID-ELPS2990>3.0.CO;2-I.

    Article  PubMed  CAS  Google Scholar 

  • Fraga, M. F.; Cañal, M. J.; Rodríguez, R. In vitro morphogenic potential of differently aged Pinus radiata trees correlates with polyamines and DNA methylation levels. Plant Cell Tissue Organ Cult. 70: 139–145; 2002a doi:10.1023/A:1016365820158.

    Article  CAS  Google Scholar 

  • Fraga, M. F.; Uriol, E.; Diego, L. B.; Berdasco, M.; Esteller, M.; Canal, M. J.; Rodríguez, R. High performance capillary electrophoretic method for the quantification of 5- methyl 2′-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis 23: 1677–1681; 2002b doi:10.1002/1522-2683(200206)23:11<1677::AID-ELPS1677>3.0.CO;2-Z.

    Article  PubMed  CAS  Google Scholar 

  • Galston, A. W. Polyamines as modulators of plant development. BioScience. 33: 382–388; 1983 doi:10.2307/1309107.

    Article  CAS  Google Scholar 

  • Goffin, J.; Eisenhauer, E. DNA methyltransferase inhibitors—state of the art. Ann. Oncology. 13: 1699–1716; 2002 doi:10.1093/annonc/mdf314.

    Article  CAS  Google Scholar 

  • Gruenbaum, Y.; Naveh-Many, T.; Cedar, A.; Razin, A. Sequence specificity of methylation in higher plant DNA. Nature 292: 860–862; 1981 doi:10.1038/292860a0.

    Article  PubMed  CAS  Google Scholar 

  • Guo, W. L.; Wu, R.; Zhang, Y. F.; Liu, X. M.; Wang, H. Y.; Gong, L.; Zhang, Z. H.; Liu, B. Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Rep. 26: 1297–1307; 2007 doi:10.1007/s00299-007-0320-0.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez, V. M.; Bangerth, F. Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol. Plant. 111: 389–395; 2001 doi:10.1034/j.1399-3054.2001.1110317.x.

    Article  PubMed  Google Scholar 

  • Jourdain, I.; Lelu, M.-A.; Label, P. Hormonal changes during growth of somatic embryogenic masses in hybrid larch. Plant Physiol. Biochem. 35: 741–749; 1997.

    CAS  Google Scholar 

  • Kaeppler, S.; Kaeppler, H. F.; Rhee, Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 43: 179–188; 2000 doi:10.1023/A:1006423110134.

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska, K.; Trontin, J. F.; Becwar, M.; Devillard, C.; Park, Y.-S.; Lelu-Walter, M.-A. Recent progress on somatic embryogenesis in four Pinus spp. Tree For. Sci. Biotechnol. 1: 11–25; 2007.

    Google Scholar 

  • Lelu, M. A.; Klimaszewska, K.; Charest, P. J. Somatic embryogenesis from immature and mature zygotic embryos and from cotyledons and needles of somatic plantlets of Larix. Can. J. For. Res. 24: 100–106; 1994 doi:10.1139/x94-015.

    Article  Google Scholar 

  • Lelu, M.-A.; Bastien, C.; Drugeault, A.; Gouez, M.-L.; Klimaszewska, K. Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol. Plant. 105: 719–728; 1999 doi:10.1034/j.1399-3054.1999.105417.x.

    Article  CAS  Google Scholar 

  • Lelu-Walter, M.-A.; Bernier-Cardou, M.; Klimaszewska, K. Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep. 25: 767–776; 2006 doi:10.1007/s00299-006-0115-8.

    Article  PubMed  CAS  Google Scholar 

  • Litvay, J. D.; Verma, D. C.; Johnson, M. A. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 4: 325–328; 1985 doi:10.1007/BF00269890.

    Article  CAS  Google Scholar 

  • Liu, J. H.; Moriguchi, T. Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Rep. 26: 125–131; 2007 doi:10.1007/s00299-006-0223-5.

    Article  PubMed  CAS  Google Scholar 

  • Ljung, K.; Sandberg, G.; Moritz, T. Methods of plant hormone analysis. In: Davis P. J. (ed) Plant hormones. Biosynthesis, signal transduction, action!. Kluwer, Dordrecht, pp 671–694; 2004.

    Google Scholar 

  • LoSchiavo, F.; Pitto, L.; Giuliano, G.; Torti, G.; Nuti-Ronchi, V.; Marazziti, D.; Vergara, R.; Orselli, S.; Terzi, M. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor. Appl. Genet. 77: 325–331; 1989 doi:10.1007/BF00305823.

    Article  CAS  Google Scholar 

  • Lubbert, M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr. Top. Microbiol. Immunol. 249: 135–164; 2000.

    PubMed  CAS  Google Scholar 

  • Lucas, I. Rôle des hormones et d’une protéine dans le contrôle de l’embryogenèse somatique adventive chez le noyer hybride (Juglans nigra x Juglans regia). Ph.D. dissertation, Cellular and Molecular Aspects of the Biology, Université d’Orléans, France; 1996.

  • Michalczuk, L.; Cooke, T. J.; Cohen, J. D. Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry. 31: 1097–1103; 1992 doi:10.1016/0031-9422(92)80241-6.

    Article  CAS  Google Scholar 

  • Miguel, C.; Gonçalves, S.; Tereso, S.; Marum, L.; Maroco, J.; Oliveira, M. M. Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell, Tissue Organ Cult. 76: 121–130; 2004 doi:10.1023/B:TICU.0000007253.91771.e3.

    Article  CAS  Google Scholar 

  • Minocha, R.; Kvaalen, H.; Minocha, S. C.; Long, S. Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens). Tree Physiol. 13: 365–377; 1993.

    PubMed  CAS  Google Scholar 

  • Minocha, R.; Smith, D. R.; Reeves, C.; Steele, K. D.; Minocha, S. C. Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol. Plant. 105: 155–164; 1999 doi:10.1034/j.1399-3054.1999.105123.x.

    Article  CAS  Google Scholar 

  • Myburg, A. A.; Remington, D. L.; O’Malley, D. M.; Sederoff, R. R.; Whetten, R. W. High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA- sequencer. BioTechniques. 30: 348–357; 2001.

    PubMed  CAS  Google Scholar 

  • Nehra, N. S.; Becwar, M. R.; Rottmann, W. H.; Pearson, L.; Chowdhury, K.; Chang, S.; Wilde, H. D.; Kodrzycki, R. J.; Zhang, C.; Gause, K. C.; Parks, D. W.; Hinchee, M. A. Forest biotechnology: Innovative methods, emerging opportunities. In Vitro Cell. Dev. Biol.—Plant. 41: 701–717; 2005 doi:10.1079/IVP2005691.

    Article  CAS  Google Scholar 

  • Palmgren, G.; Mattsson, O.; Okkels, F. T. Specific levels of DNA methylation in various tissues, cell lines, and cell types of Daucus carota. Plant Physiol. 95: 174–178; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski, J.; Whitham, S. A. Gene silencing and DNA methylation processes. Curr. Opin. Plant Biol. 4: 123–129; 2001 doi:10.1016/S1369-5266(00)00147-3.

    Article  PubMed  CAS  Google Scholar 

  • Pelgas, B.; Bousquet, J.; Beauseigle, S.; Isabel, N. A composite linkage map from two crosses for the species complex Picea mariana x Picea rubens and analysis of synteny with other Pinaceae. Theor. Appl. Genet. 111: 1466–1488; 2005 doi:10.1007/s00122-005-0068-2.

    Article  PubMed  CAS  Google Scholar 

  • Peraza-Echeverria, S.; Herrera-Valencia, V. A.; James-Kay, A. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 161: 359–367; 2001 doi:10.1016/S0168-9452(01)00421-6.

    Article  PubMed  CAS  Google Scholar 

  • Prakash, A. P.; Kumar, P. P. Inhibition of shoot induction by 5-azacytidine and 5-aza- 2′-deoxycytidine in Petunia involves DNA hypomethylation. Plant Cell Rep. 16: 719–724; 1997 doi:10.1007/s002990050309.

    Article  CAS  Google Scholar 

  • Ramarosandratana, A.; Harvengt, L.; Bouvet, A.; Calvayrac, R.; Pâques, M. Effects of carbohydrate source, polyethylene glycol and gellan gum concentration on embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos. In Vitro Cell. Dev. Biol. Plant. 37: 29–34; 2001a doi:10.1007/s11627-001-0006-1.

    Article  CAS  Google Scholar 

  • Ramarosandratana, A.; Harvengt, L.; Bouvet, A.; Calvayrac, R.; Pâques, M. Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos. Plant Sci. 160: 473–479; 2001b doi:10.1016/S0168-9452(00)00410-6.

    Article  PubMed  CAS  Google Scholar 

  • Russo, V. E. A.; Martienssen, R. A.; Riggs, A. D. Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor1996.

    Google Scholar 

  • Sarjala, T.; Häggman, H.; Aronen, T. Effect of exogenous polyamines and inhibitors of polyamine biosynthesis on growth and free polyamine contents of embryogenic Scots pine callus. J. Plant Physiol. 150: 597–602; 1997.

    CAS  Google Scholar 

  • Sasaki, K.; Shimomura, K.; Kamada, H.; Harada, H. IAA metabolism in embryogenic and non-embryogenic carrot cells. Plant Cell Physiol. 35: 1159–1164; 1994.

    CAS  Google Scholar 

  • Steel, R. G. D.; Torrie, J. H. Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill, New York; 1980: 233–237.

    Google Scholar 

  • Tariq, M.; Paszkowski, J. DNA and histone methylation in plants. Trends Genet. 20(6): 244–251; 2004. doi:10.1016/j.tig.2004.04.005.

    Article  PubMed  CAS  Google Scholar 

  • Uribe-Moraga, M.; Cañal, M. J.; Noceda, C.; Ríos, D.; Fraga, M. F.; Ferrando, A.; Altabella, T.; Tiburcio, A. F.; Rodríguez, R. Polyamines in herbaceous and woody plants. Curr. Top. Plant Biol. 5: 53–62; 2004.

    CAS  Google Scholar 

  • Xu, M.; Li, X.; Korban, S. S. DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor. Appl. Genet. 109: 899–910; 2004 doi:10.1007/s00122-004-1717-6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Bernier-Cardou (CFS-LFC, Canada) is gratefully acknowledged for her expert statistical analysis of the hormone, PA, and DNA global methylation data. KK and MALW thank le STUDIUM, France for their financial contribution to this project, P. Alazard (FCBA, France) and A. Raffin, P. Patuszka (INRA Bordeaux) for providing seed cones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Klimaszewska.

Additional information

Editor: Gregory C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimaszewska, K., Noceda, C., Pelletier, G. et al. Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell.Dev.Biol.-Plant 45, 20–33 (2009). https://doi.org/10.1007/s11627-008-9158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9158-6

Keywords

Navigation