Skip to main content

Advertisement

Log in

Somatic plant regeneration from selected common cypress (Cupressus sempervirens L.) clones resistant to the bark canker disease

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The effectiveness of a protocol for somatic embryogenesis in conifers requires both the proliferation of embryonal masses and their conversion into somatic plants. Despite several successful protocols developed for Pinaceae, species belonging to Cuperessaceae family are often characterized by a problematic and unsatisfactory maturation of somatic embryos. Hence, the main goal of this study was to overcome the problem of embryo maturation and plant regeneration in Cupressus sempervirens, a Mediterranean species widely used for its ornamental value, timber production and interest in reforestation programmes. Embryogenic lines were produced from selected canker-resistant genotypes of common cypress; the effect of polyethylene glycol (PEG), desiccation period, medium composition and culturing period on the somatic embryo maturation and conversion, were evaluated. Despite significant variations observed among genotypes, the PEG based medium was the most effective for somatic embryo maturation. Germination and conversion of mature somatic embryos took place after three months of culture in a low-sucrose LP medium with activated charcoal. A short desiccation period failed to improve the germination rate of the mature somatic embryos. To our knowledge this is the first protocol reporting on somatic plant regeneration from somatic embryos of C. sempervirens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

AC:

Activated charcoal

BA:

Benzylaminopurine

BSA:

Bovine serum albumin

DCR:

Gupta and Durzan medium (1985)

ECL:

Embryogenic cell line

EIM:

Embryogenic induction medium

EM:

Embryonal mass

EMM:

Embryogenic post-maturation medium

GC:

Germination and conversion medium

HRU:

High relative humidity

LP:

Quorin and Lepoivre basal salts mixture (1977)

M-BSA:

Maturation medium with BSA

M-PEG:

Maturation medium with PEG

PEG:

Polyethylene glycol

PGR:

Plant growth regulator

SE:

Somatic embryogenesis

Se:

Standard error of the mean

References

  • Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2011) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tissue Organ Cult 109(3):391–400

    Article  Google Scholar 

  • Bonga JM (2012) Recalcitrance in the in vitro propagation of trees. In: Park YS, Bonga JM (eds) Proceedings of the IUFRO working party 2.09.02 conference on “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management”, 25–28 June 2012, Brno Czech Republic. Published online: http://www.iufro20902.org/

  • Celestino C, Carneros E, Ruiz-Galea M, Alonso-Blazquez N, Alegre J, Toribio M (2013) Cloning stone pine (Pinus Pinea L.) by somatic embryogenesis. In: Mutke S, Piqué M, Calama R (eds) Mediterranean stone pine for agroforestry. Zaragoza, pp 89–96 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 105)

  • Danti R, Raddi P, Panconesi A, Di Lonardo V, Della Rocca G (2006) ‘Italico’ and ‘Mediterraneo’: two Seiridium cardinale canker resistant Cypress cultivars of Cupressus sempervirens. HortScience 41:1357–1359

    Google Scholar 

  • Danti R, Di Lonardo V, Pecchioli A, Della Rocca G (2013) ‘Le Crete 1’ and ‘Le Crete 2’: two newly patented Seiridium cardinale canker-resistant cultivars of Cupressus sempervirens. Forest Pathol 43:204–210

    Article  Google Scholar 

  • Filonova L, Bozhkov P, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51(343):249–264

    Article  CAS  PubMed  Google Scholar 

  • Giovanelli A, De Carlo A (2007) Micropropagation of mediterranean cypress (Cupressus sempervirens L.). In: Mohan Jain S, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, The Netherlands, pp 93–105

    Chapter  Google Scholar 

  • Gomez MP, Segura J (1996) Morphogenesis in leaf and single-cell cultures of mature Juniperus oxycedrus. Tree Physiol 16(8):681–686

    Article  PubMed  Google Scholar 

  • Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus tambertiana). Plant Cell Rep 4:177–179

    Article  CAS  PubMed  Google Scholar 

  • Helmersson A, von Arnold S (2008) Embryogenic cell lines of Juniperus communis; easy establishment and embryo maturation, limited germination. Plant Cell Tissue Organ Cult 96(2):211–217

    Article  Google Scholar 

  • Klimaszewska K, Park Y, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. Vitro Cell Dev Biol 37(3):392–399

    Article  Google Scholar 

  • Klimaszewska K, Trontin JF, Beckwar M, Devillard C, Park Y, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1(1):11–25

    Google Scholar 

  • Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin J (2015) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology. Humana Press, New York, pp 131–166 (in press)

  • Lambardi M (2000) Somatic embryogenesis in cypress (Cupressus sempervirens L.). In: Mohan Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 6. Kluver Academic publishers (NL), Boston, pp 553–567

    Chapter  Google Scholar 

  • Lambardi M, Harry IS, Menabeni D, Thorpe TA (1995) Organogenesis and somatic embryogenesis in Cupressus sempervirens. Plant Cell Tissue Organ Cult 2:179–182

    Article  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25(8):767–776

    Article  CAS  PubMed  Google Scholar 

  • Maruyama TE, Hosoi Y (2012) Post-maturation treatment improves and synchronizes somatic embryo germination of three species of Japanese pines. Plant Cell Tissue Organ Cult 110(1):45–52

    Article  Google Scholar 

  • Maruyama E, Hosoi Y, Katsuaki I (2002) Somatic embryogenesis in sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J For Res 7:23–34

    Article  CAS  Google Scholar 

  • Maruyama E, Ishii K, Hosoi Y (2005) Efficient plant regeneration of Hinoki cypress (Chamaecyparis obtusa) via somatic embryogenesis. J For Res 10(1):73–77

    Article  CAS  Google Scholar 

  • Mo LH, Egertsdotter U, Von Arnold S (1996) Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology. Ann Bot 77(2):143–152

    Article  CAS  Google Scholar 

  • Montalban IA, Garcia-Mendiguren O, Moncalean P (2015) Somatic embryogenesis in Pinus spp. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology. Humana Press, New York, pp 405–416 (in press)

  • Muilu-Makela R, Vuosku J, Hamberg L, Latva-Maenpaa H, Haggman H, Sarjala T (2015) Osmotic stress affects polyamine homeostasis and phenolic content in proembryogenic liquid cell cultures of Scots pine. Plant cell Tiss Organ Cult 122:709–726

    Article  CAS  Google Scholar 

  • Panconesi A, Raddi P (1991) Agrimed Nr. 1 e Bolgheri. Due nuove selezioni resistenti al cancro del cipresso. Cellulosa e Carta 42(1):47–52

    Google Scholar 

  • Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136(16):2675–2688

    Article  PubMed  Google Scholar 

  • Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24(5):271–279

    Article  CAS  PubMed  Google Scholar 

  • Quorin M, Lepoivre P (1977) Etude des milieux adaptes aux cultures in vitro de Prunus. Acta Hort 78:437442

    Google Scholar 

  • Sallandrouze A, Faurobert M, El-Maataoui M, Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20(4–5):1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Svobodova A, Albrechtova J, Kumstyrova L, Lipavska H, Vagner M, Vondrakova Z (1999) Somatic embryogenesis in Norway spruce: anatomical study of embryo development and influence of polyethylene glycol on maturation process. Plant Physiol Biochem 37(3):209–221

    Article  CAS  Google Scholar 

  • von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Hogberg KA, Wiweger M (2005) Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tissue Organ Cult 81(3):323–329

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant co-funded by CNR (Research National Council of Italy) and Regione Toscana: REGIONE TOSCANA POR-CRO-FSE “Indagine sulle relazione cipresso-allergie: selezione varietà di cipresso con polline a ridotta allergenicità e con indotta sterilità (CYPALL)”. The authors gratefully thank Dr. Paolo Raddi for his helpful advices and Mr. Vincenzo Di Lonardo for his technical help.

Authors contributions

S.B. designed and made the experiments and data collection, and wrote the first draft of the manuscript; M.L. designed the experiment and gave assistance in performing experiment and data collection; M.L and R.D. critically revised the article for submission; R.D. is the responsible for the genetic improvement programme of cypress and for the financial funding of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Barberini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barberini, S., Danti, R. & Lambardi, M. Somatic plant regeneration from selected common cypress (Cupressus sempervirens L.) clones resistant to the bark canker disease. Plant Cell Tiss Organ Cult 124, 393–403 (2016). https://doi.org/10.1007/s11240-015-0902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0902-4

Keywords

Navigation