Skip to main content
Log in

Combined elicitation of chitosan and ultraviolet C enhanced stilbene production and expression of chitinase and β-1,3-glucanase in Vitis vinifera cell suspension cultures

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cell suspension cultures of Vitis vinifera were treated with chitosan and ultraviolet C (UV-C) irradiation, alone or in combination, to investigate the relationship between the production of stilbene and the transcript profiles of genes encoding the enzymes involved in stilbene synthesis. Treatment at the proper concentration or dosage enhanced both stilbene production inside the cells and trans-resveratrol accumulation in the culture medium without loss of biomass, and the combined treatment was the most efficient. Total intracellular stilbene content was markedly increased by the joint use of chitosan and UV-C, reaching the maximum at 60 h (1945.91 ± 70.73 μg g−1 DW; 207.23 % higher than in untreated cells) after elicitation. When cell cultures were supplemented with both elicitors, we observed a synergistic effect on the accumulation of trans-resveratrol release into the culture medium with the maximal concentration of 3.05 ± 0.17 mg l−1 at 60 h. Total phenolics and total flavonoids contents were also highly increased after elicitations. The expression levels of genes associated with stilbene biosynthesis were significantly up-regulated in response to the two elicitors, and the combined elicitation showed a synergistic effect on the expression of stilbene synthase. Furthermore, the expression levels and enzyme activities of two pathogenesis-related proteins, chitinase and β-1,3-glucanase, increased after treatment. The results suggest that the combined treatment of chitosan and UV-C irradiation can significantly enhance the production of stilbene in V. vinifera cell cultures and may induce defense response by increasing the expression and activity levels of chitinase and β-1,3-glucanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

4CL:

4-Coumarate: CoA ligase

C4H:

Cinnamate 4-hydroxylase

CHI:

Chitinase

CHIT1b:

Basic class I chitinase

CHIT3:

Acidic class III chitinase

CHIT4c:

Acidic class IV chitinase

CHS:

Chalcone synthase

DW:

Dry weight

FW:

Fresh weight

GLU:

β-1,3-Glucanase

PAL:

Phenylalanine ammonia-lyase

PR:

Pathogenesis-related

qPCR:

Quantitative real-time polymerase chain reaction

STS:

Stilbene synthase

UV-C:

Ultraviolet C

References

  • Abeles FB, Forrence LE (1970) Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris L. Plant Physiol 45:395–400. doi:10.1104/pp.45.4.395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90. doi:10.1016/j.tplants.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  • Aleynova OA, Dubrovina AS, Manyakhin AY, Karetin YA, Kiselev KV (2015) Regulation of resveratrol production in Vitis amurensis cell culures by calcium-dependent protein kinase. Appl Biochem Biotechnol 175:1460–1476. doi:10.1007/s12010-014-1384-2

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gutierrez J, Pedreño MA, Sottomayor M (2014) Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tissue Organ Cult 119:543–551. doi:10.1007/s11240-014-0554-9

    Article  CAS  Google Scholar 

  • Austin MB, Bowman ME, Ferrer JL, Schröder J, Noel JP (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194. doi:10.1016/j.chembiol.2004.05.024

    Article  CAS  PubMed  Google Scholar 

  • Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188–1194. doi:10.1094/PHYTO-96-1188

    Article  CAS  PubMed  Google Scholar 

  • Bradford MN (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  • Busam G, Kassemeyer HH, Matern U (1997) Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol 115:1029–1038. doi:10.1104/pp.115.3.1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai ZZ, Kastell A, Mewis I, Knorr D, Smetanska I (2012) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult 108:401–409. doi:10.1007/s11240-011-0051-3

    Article  CAS  Google Scholar 

  • Chakraborty M, Karun A, Mitra A (2009) Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J Plant Physiol 166:63–71. doi:10.1016/j.jplph.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  • Crupi P, Pichierri A, Basile T, Antonacci D (2013) Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chem 141:802–808. doi:10.1016/j.foodchem.2013.03.055

    Article  CAS  PubMed  Google Scholar 

  • Deng LL, Zeng KF, Zhou YH, Huang Y (2015) Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit. Eur Food Res Technol 240:795–804. doi:10.1007/s00217-014-2385-7

    Article  CAS  Google Scholar 

  • Donnez E, Jeandet P, Clément C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713

    Article  CAS  PubMed  Google Scholar 

  • Fan B, Shen L, Liu KL, Zhao DY, Yu MM, Sheng JP (2008) Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans. J Sci Food Agric 88:1238–1244. doi:10.1002/jsfa.3212

    Article  CAS  Google Scholar 

  • Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624. doi:10.1002/pmic.200800386

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Ghanim H, Sia CL, Abuaysheh S, Korzeniewski K, Patnaik P, Marumganti A, Chaudhuri A, Dandona P (2010) An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum Cuspidatum containing resveratrol. J Clin Endocrinol Metab 95:E1–E8. doi:10.1210/jc.2010-0482

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeandet P, Bessis R, Gautheron B (1991) The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in different developmental stages. Am J Enol Vitic 42:41–46

    CAS  Google Scholar 

  • Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S, Clément C, Courot E (2010) Biosynthesis, metabolism, molecular engineering and biological functions of stilbene phytoalexins in plants. BioFactors 36:331–341. doi:10.1002/biof.108

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Clément C, Courot E, Cordelier S (2013) Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int J Mol Sci 14:14136–14170. doi:10.3390/ijms140714136

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeandet P, Hébrard C, Cordelier S, Deville MA, Dorey S, Aziz A, Crouzet J (2014a) Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19:18033–18056. doi:10.3390/molecules191118033

    Article  PubMed  Google Scholar 

  • Jeandet P, Clément C, Courot E (2014b) Resveratrol production at large scale using plant cell suspensions. Eng Life Sci 14:622–632. doi:10.1002/elsc.201400022

    Article  CAS  Google Scholar 

  • Kiselev KV (2011) Perspectives for production and application of resveratrol. Appl Microbiol Biotechnol 90:417–425. doi:10.1007/s00253-011-3184-8

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692. doi:10.1016/j.jbiotec.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Dubrovina AS, Bulgakov VP (2009) Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 82:647–655. doi:10.1007/s00253-008-1788-4

    Article  CAS  PubMed  Google Scholar 

  • Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tissue Organ Cult 103:333–342. doi:10.1007/s11240-010-9785-6

    Article  CAS  Google Scholar 

  • Larkin PJ (1976) Purification and viability determinations of plant protoplasts. Planta 128:213–216. doi:10.1007/BF00393231

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Liu CY, Yang CX, Wang LJ, Li SH (2010) Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem 122:475–481. doi:10.1016/j.foodchem.2010.03.055

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Mawalagedera SMMR, Gould KS (2015) Chilling and salinity increase extractable antioxidants in cell suspension cultures of the sow thistle, Sonchus oleraceus L. Plant Cell Tissue Organ Cult 121:35–44. doi:10.1007/s11240-014-0676-0

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16. doi:10.1007/s11240-014-0467-7

    Article  CAS  Google Scholar 

  • Palomer X, Capdevila-Busquets E, Álvarez-Guardia D, Barroso E, Pallàs M, Camins A, Davidson MM, Planavila A, Villarroya F, Vázquez-Carrera M (2013) Resveratrol induces nuclear factor-κB activity in human cardiac cells. Int J Cardiol 167:2507–2516. doi:10.1016/j.ijcard.2012.06.006

    Article  PubMed  Google Scholar 

  • Park HL, Lee SW, Jung KH, Hahn TR, Cho MH (2013) Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96:57–71. doi:10.1016/j.phytochem.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  • Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G (2003) Phenolic content and antioxidant capacity of Muscadine grapes. J Agric Food Chem 51:5497–5503. doi:10.1021/jf030113c

    Article  CAS  PubMed  Google Scholar 

  • Petit AN, Baillieul F, Vaillant-Gaveau N, Jacquens L, Conreux A, Jeandet P, Clément C, Fontaine F (2009) Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation. J Exp Bot 60:1155–1162. doi:10.1093/jxb/ern361

    Article  CAS  PubMed  Google Scholar 

  • Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K, Viret O (2003) δ-Viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. J Agric Food Chem 51:5488–5492. doi:10.1021/jf030227o

    Article  CAS  PubMed  Google Scholar 

  • Pombo MA, Rosli HG, Martinez GA, Civello PM (2011) UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria × ananassa, Duch.). Postharvest Biol Technol 59:94–102. doi:10.1016/j.postharvbio.2010.08.003

    Article  CAS  Google Scholar 

  • Qu JG, Zhang W, Yu XJ (2011) A combination of elicitation and precursor feeding leads to increased anthocyanin synthesis in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult 107:261–269. doi:10.1007/s11240-011-9977-8

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller J, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi:10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  • Riha J, Brenner S, Böhmdorfer M, Giessrigl B, Pignitter M, Schueller K, Thalhammer T, Stieger B, Somoza V, Szekeres T, Jäger W (2014) Resveratrol and its major sulfated conjugates are substrates of organic anion transporting polypeptides (OATPs) impact on growth of ZR-75-1 breast cancer cells. Mol Nutr Food Res 58:1830–1842. doi:10.1002/mnfr.201400095

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol 114:771–778. doi:10.1104/pp.114.3.771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanazzi G, Nigro E, Ippolito A, Di Venere D, Salerno M (2002) Effects of pre- and post-harvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 67:1862–1867. doi:10.1111/j.1365-2621.2002.tb08737.x

    Article  CAS  Google Scholar 

  • Romanazzi G, Gabler FM, Smilanick JL (2006) Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis 90:445–450. doi:10.1094/PD-90-0445

    Article  CAS  Google Scholar 

  • Shumakova OA, Manyakhin AY, Kiselev KV (2011) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in cell cultures of Vitis amurensis treated with coumaric acid. Appl Biochem Biotechnol 165:1427–1436. doi:10.1007/s12010-011-9361-5

    Article  CAS  PubMed  Google Scholar 

  • Tassoni A, Fornale S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905. doi:10.1111/j.1469-8137.2005.01383.x

    Article  CAS  PubMed  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455. doi:10.1007/s00018-003-3231-4

    Article  CAS  PubMed  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114:405–413. doi:10.1007/s10658-006-0005-5

    Article  CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.phyto.44.070505.143425

    Article  PubMed  Google Scholar 

  • Vitalini S, Ruggiero A, Rapparini F, Neri L, Tonni M, Iriti M (2014) The application of chitosan and benzothiadiazole in vineyard (Vitis vinifera L. cv Groppello Gentile) changes the aromatic profile and sensory attributes of wine. Food Chem 162:192–205. doi:10.1016/j.foodchem.2014.04.040

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Ma L, Xi HF, Duan W, Wang JF, Li SH (2013) Individual and combined effects of CaCl2 and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins. J Agric Food Chem 61:7135–7141. doi:10.1021/jf401220m

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Wang W, Zhan JC, Huang WD, Xu HY (2015) An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Sci Hortic 191:82–89. doi:10.1016/j.scienta.2015.04.039

  • Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26:667–677. doi:10.1007/BF00013752

  • Wolfe K, Wu XZ, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51:609–614. doi:10.1021/jf020782a

    Article  CAS  PubMed  Google Scholar 

  • Xu LF, Du YM (2012) Effects of yeast antagonist in combination with UV-C treatment on postharvest diseases of pear fruit. Biocontrol 57:451–461. doi:10.1007/s10526-011-9400-8

    Article  CAS  Google Scholar 

  • Xu A, Zhan JC, Huang WD (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue Organ Cult 122:197–211. doi:10.1007/s11240-015-0761-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National “Twelfth Five-Year” Plan for Science and Technology Support “Key Technology Research and Industry Demonstration of High Quality Fruit Wine” (2012BAD31B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, A., Zhan, JC. & Huang, WD. Combined elicitation of chitosan and ultraviolet C enhanced stilbene production and expression of chitinase and β-1,3-glucanase in Vitis vinifera cell suspension cultures. Plant Cell Tiss Organ Cult 124, 105–117 (2016). https://doi.org/10.1007/s11240-015-0879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0879-z

Keywords

Navigation