Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation of axillary bud callus of Hibiscus rosa-sinensis L. ‘Ruby’ and regeneration of transgenic plants

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Hibiscus rosa-sinensis L. is a popular ornamental species valued for its large brightly coloured ephemeral flowers and has a range of health-promoting properties. The value of H. rosa-sinensis could be improved even further if there were ways to prolong the display life of its short-lived flowers, and to improve its frost tolerance. Development of an efficient plant transformation and regeneration procedure that allows introduction of genes into the plant will greatly facilitate this. Here we outline a transformation and regeneration procedure that is the first to produce transformed H. rosa-sinensis plants successfully. We first optimised callus induction and shoot regeneration efficiency. The highest shoot regeneration frequency of 66.7 % was achieved in the cultivar ‘Ruby’ when callus induced from axillary buds using a basal medium supplemented with 2.22 µM benzylaminopurine and 2.47 µM β-naphthoxyacetic acid was cultured on shoot regeneration medium. The frequency of shoot regeneration from callus was lower in ‘Ben James’ and absent in ‘Bright Light’, indicating genotypic differences. When axillary bud-derived callus of ‘Ruby’ was co-cultured with Agrobacterium tumefaciens harbouring a β-glucuronidase (GUS) reporter plasmid, 49 % of calli produced shoots on selection media. All tested plantlets were confirmed as transformed based on the presence of the GUS transgene in the genomic DNA and GUS activity measurements. Roots were induced on transgenic plantlets using half-strength basal medium supplemented with 2.85 µM indole-3-acetic acid. This simple protocol can be used to improve the ornamental, agronomic and health-promoting traits of H. rosa-sinensis hitherto recalcitrant to A. tumefaciens-mediated transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Airò M, Giardina G, Farruggia G, Zizzo GV (2009) In vitro propagation of Hibiscus rosa-sinensis (L.). Acta Hortic 812:107–112

    Google Scholar 

  • Armour JA, Sismani C, Patsalis PC, Cross G (2000) Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res 28:605–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banks SW, Gossett DR, Lucas MC, Millhollon EP, LaCelle M (1993) Agrobacterium-mediated transformation of kenaf (Hibiscus cannabinus L.) with the β-glucuronidase (GUS) gene. Plant Mol Biol Report 11:101–104

    Article  CAS  Google Scholar 

  • Batista D, Fonseca S, Serrazina S, Figueiredo A, Pais MS (2008) Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment. Plant Cell Rep 27:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23:263–271

    Article  CAS  PubMed  Google Scholar 

  • Campos-Vargas R, Saltveit ME (2002) Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol Plant 114:73–84

    Article  CAS  PubMed  Google Scholar 

  • Chawla HS (2002) Introduction to plant biotechnology, 2nd edn. Science Publishers, Plymouth

    Google Scholar 

  • Chen Y, Lu L, Deng W, Yang W, McAvoy R, Zhao D, Pei Y, Luo K, Duan H, Smith W, Thammina C, Zheng X, Ellis D, Li Y (2006) In vitro regeneration and Agrobacterium-mediated genetic transformation of Euonymus alatus. Plant Cell Rep 25:1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) In vitro culture of Hibiscus rosa-sinensis L.: influence of iron, calcium and BAP on establishment and multiplication. Plant Cell Tissue Organ Cult 93:151–161

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Müller R (2009) Transformation of Hibiscus rosa-sinensis L. by Agrobacterium rhizogenes. J Hortic Sci Biotechnol 84:204–208

    CAS  Google Scholar 

  • Costa MGC, Otonoi WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373

    Article  CAS  Google Scholar 

  • De Stradis A, Parrella G, Vovlas C, Ragozzino A (2008) Vein yellowing of Hibiscus rosa-sinensis caused by eggplant mottled dwarf virus in southern Italy. J Plant Pathol 90:359–361

    Google Scholar 

  • Feeney M, Bhagwat B, Mitchell JS, Lane WD (2007) Shoot regeneration from organogenic callus of sweet cherry (Prunus avium L.). Plant Cell Tissue Organ Cult 90:201–214

    Article  Google Scholar 

  • Gamborg O, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gassama-Dia YK, Sanè D, Ndoye M (2004) Direct genetic transformation of Hibiscus sabdariffa L. Afr J Biotechnol 3:226–228

    Article  CAS  Google Scholar 

  • Gauthaman KK, Saleem MTS, Thanislas PT, Prabhu V, Krishnamoorthy K, Devaraj NS, Somasundara JS (2006) Cardioprotective effect of the Hibiscus rosa-sinensis flowers in an oxidative stress model of myocardial ischemic reperfusion injury in rat. BMC Complement Altern Med 6:3

    Article  Google Scholar 

  • Gleave AP (1992) A versatile binary vector with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Herath SP, Suzuki T, Hattori K (2004) Multiple shoot regeneration from young shoots of kenaf (Hibiscus cannabinus). Plant Cell Tissue Organ Cult 77:49–53

    Article  CAS  Google Scholar 

  • Herath SP, Suzuki T, Hattori K (2005) Factors influencing Agrobacterium mediated genetic transformation of kenaf. Plant Cell Tissue Organ Cult 82:201–206

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Huang JG, Fan ZF, Li HF, Tian GZ, Hu JS (2004) First report of Tomato mosaic virus on Hibiscus rosa-sinensis in China. Plant Dis 88:683

    Article  Google Scholar 

  • Hunter DA, Watson LM (2008) The harvest-responsive region of the Asparagus officinalis asparagine synthetase promoter reveals complexity in the regulation of the harvest response. Funct Plant Biol 35:1212–1223

    Article  CAS  Google Scholar 

  • Hwang O, Cho M, Han YJ, Kim SH, Kim DS, Hwang I, Kim JI (2014) Agrobacterium-mediated genetic transformation of Miscanthus sinensis. Plant Cell Tissue Organ Cult 117:51–63

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jenderek MM, Olney AJ (2001) Hibiscus syriacus plant regeneration from callus. Int Plant Propag Soc Prod 50:565–568

    Google Scholar 

  • Kallioniemi A, Visakorpi T, Karhu T, Pinkel D, Kallioniemi OP (1996) Gene copy number analysis by fluorescence in situ hybridization and comparative genomic hybridization. Methods 9:113–121

    Article  CAS  PubMed  Google Scholar 

  • Ke D, Saltveit ME (1989) Wound-induced ethylene production, phenolic metabolism and susceptibility to russet spotting in iceberg lettuce. Physiol Plant 76:412–418

    Article  CAS  Google Scholar 

  • Li ZW, Hansen JL, Liu Y, Zemetra RS, Berger PH (2004) Using real-time PCR to determine transgene copy number in wheat. Plant Mol Biol Report 22:179–188

    Article  CAS  Google Scholar 

  • Loaiza-Velarde JG, Tomás-Barberá FA, Saltveit ME (1997) Effect of intensity and duration of heat-shock treatments on wound-induced phenolic metabolism in Iceberg lettuce. J Am Soc Hortic Sci 122:873–877

    CAS  Google Scholar 

  • Loomis WD (1974) Overcoming problems of phenolics and quinines in the isolation of plant enzymes and organelles. Methods Enzymol 31:528–544

    Article  CAS  PubMed  Google Scholar 

  • Lucito R, West J, Reiner A, Alexander J, Esposito D, Mishra B, Powers S, Norton L, Wigler M (2000) Detecting gene copy number fluctuation in tumor cells by microarray analysis of genomic representations. Genome Res 10:1726–1736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao MJ, He ZF, Yu H, Li HP (2008) Molecular characterization of cotton leaf curl multan virus and its satellite DNA that infects Hibiscus rosa-sinensis. Chin J Virol 24:64–68

    CAS  Google Scholar 

  • Mercuri A, Braglia L, Benedetti Ld, Ballardini M, Nicoletti F, Bianchini C (2010) New genotypes of Hibiscus rosa-sinensis through classical breeding and genetic transformation. Acta Hortic 855:201–208

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Palla KJ, Pijut PM (2015) Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls. Plant Cell Tissue Organ Cult 120:631–641

    Article  CAS  Google Scholar 

  • Sachdewa A, Khemani LD (2003) Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J Ethnopharmacol 89:61–66

    Article  PubMed  Google Scholar 

  • Sakhanokho HF (2008) In vitro multiple shoot induction and plant regeneration from shoot apices of Hibiscus acetosella Welw. Ex. Hiern. J Crop Improv 21:201–208

    Article  CAS  Google Scholar 

  • Serres R, McCown B, Zeldin E (1997) Detectable β-glucuronidase activity in transgenic cranberry is affected by endogenous inhibitors and plant development. Plant Cell Rep 16:641–646

    CAS  Google Scholar 

  • Sharma S, Sultana S (2004) Effect of Hibiscus rosa-sinensis extract on hyperproliferation and oxidative damage caused by benzoyl peroxide and ultraviolet radiations in mouse skin. Basic Clin Pharmacol Toxicol 95:220–225

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Chen J, Kane ME (2007) Indirect shoot organogenesis from leaves of Dieffenbachia cv. Camouflage. Plant Cell Tissue Organ Cult 89:83–90

    Article  Google Scholar 

  • Song G, Walworth A (2013) Agrobacterium tumefaciens-mediated transformation of Atropa belladonna. Plant Cell Tissue Organ Cult 115:107–113

    Article  CAS  Google Scholar 

  • Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 113:513–527

    Article  CAS  Google Scholar 

  • Vainstein A, Fisher M, Ziv M (1993) Application of reporter genes to carnation transformation. Hortic Sci 28:1122–1124

    CAS  Google Scholar 

  • Valdez-Aguilar LA, Reed DW (2006) Comparison of growth and alkalinity-induced responses in two cultivars of Hibiscus (Hibiscus rosa-sinensis L.). Hortic Sci 41:1704–1708

    CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Vankar PS, Srivastava J (2008) Comparative study of total phenol, flavonoid contents and antioxidant activity in Canna indica and Hibiscus rosa-sinensis: prospective natural food dyes. Int J Food Eng 4:14–20

    Google Scholar 

  • Vazquez-Thello A, Yang LJ, Hidaka M, Uozomi T (1996) Inherited chilling tolerance in somatic hybrids of transgenic Hibiscus rosa-sinensis × transgenic Lavatera thurigiaca selected by double-antibiotic resistance. Plant Cell Rep 15:506–511

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh S, Thilagavathi J, Sundar SD (2008) Anti-diabetic activity of flowers of Hibiscus rosa-sinensis. Fitoterapia 79:79–81

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Ran Y, Atkinson RG, Gleave AP, Cohen D (2006) Transformation of Actinidia eriantha: a potential species for functional genomics studies in Actinidia. Plant Cell Rep 25:425–431

    Article  CAS  PubMed  Google Scholar 

  • Winichayakul S, Moyle RL, Coupe SA, Davies KM, Farnden KJF (2004) Analysis of the asparagus (Asparagus officinalis) asparagine synthetase gene promoter identifies evolutionarily conserved cis-regulatory elements that mediate Suc-repression. Funct Plant Biol 31:63–72

    Article  CAS  Google Scholar 

  • Yang LJ, Vazquez-Tello A, Hidaka M, Masaki H, Uozomi T (1996) Agrobacterium-mediated transformation of Hibiscus syriacus and regeneration of transgenic plants. Plant Tissue Cult Lett 13:161–167

    Article  CAS  Google Scholar 

  • Yuan JS, Burris J, Stewart NR, Mentwab A, Stewart CN Jr (2007) Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics 8:1–12

    Article  Google Scholar 

  • Yuan JS, Wang D, Stewart NR, Mentwab A, Stewart CN Jr (2008) Statistical methods for efficiency adjusted real-time PCR analysis. Biotechnol J 3:112–123

    Article  CAS  PubMed  Google Scholar 

  • Zawadzka M, Orlikowska T (2009) Influence of FeEDDHA on in vitro rooting and acclimatisation of red raspberry (Rubus idaeus L.) in peat and vermiculite. J Hortic Sci Biotechnol 84:599–603

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Sriya Pathirana and Andrew Mullan for tissue culture media preparation and Ian King for maintaining the plants in the greenhouse. We also thank Nick Albert for supplying the binary vector pNWA37, and Mary Christey and Murray Boase for critical reading of the manuscript. The first author is grateful to Prof. Vernieri Paolo and Prof. Serra Giovanni for a scholarship granted by University of Pisa (Italy) and Scuola Superiore Sant’Anna (Italy) for a year and half of work at Plant and Food Research, New Zealand.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjith Pathirana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivellini, A., Ferrante, A., Hunter, D.A. et al. Agrobacterium tumefaciens-mediated transformation of axillary bud callus of Hibiscus rosa-sinensis L. ‘Ruby’ and regeneration of transgenic plants. Plant Cell Tiss Organ Cult 121, 681–692 (2015). https://doi.org/10.1007/s11240-015-0738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0738-y

Keywords

Navigation