Skip to main content
Log in

Transformation of Actinidia eriantha: A potential species for functional genomics studies in Actinidia

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Protocols were developed for regeneration and Agrobacterium-mediated transformation of Actinidia eriantha Benth. A. eriantha has a number of features that make it a useful tool for functional genomics in Actinidia: the vines are relatively small and non-vigorous in nature, flowers form all over the vine including on lower axillary branches and the species flowers prolifically in greenhouse conditions. Flowering and fruiting of transgenic A. eriantha plants was obtained within 2 years of transformation in a containment greenhouse. GUS (β-glucuronidase) activity indicating stable expression of the uidA gene was observed in leaf, stem, root, petal and fruit tissues. Molecular evidence for incorporation of transgenes into the A. eriantha genome was obtained by PCR and DNA gel blot analysis. Inheritance of transgenic phenotypes was demonstrated in seedling progeny. Functional genomic studies in kiwifruit have been initiated using transgenic A. eriantha plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson RG, MacRae EA (2005) Kiwifruit. In: Pua EC, Davey MR (eds) Tropical crops I. Biotechnology in agriculture and forestry (in press)

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology—towards genetically superior transgenic rice. Plant Biotechnol J 3:275–307

    Article  PubMed  CAS  Google Scholar 

  • De Bondt A, Eggermont K, Druart P, De Vil M, Goderis I, Vanderleyden J, Borekaert WF (1994) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 13:587–593

    Article  Google Scholar 

  • Cao X, Liu Q, Rowland LJ, Hammerschlag FA (1998) GUS expression in blueberry (Vaccinium spp.): factors influencing Agrobacterium-mediated gene transfer efficiency. Plant Cell Rep 18:266–270

    Article  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Donaldson PA, Simmonds DH (2000) Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep 19:478–484

    Article  CAS  Google Scholar 

  • Ferguson AR (1990) The genus Actinidia. In: Warrington IJ, Weston GC (eds) Kiwifruit science and management. Ray Richards Publisher, Auckland

    Google Scholar 

  • Fraser LG, Kent J, Harvey CF (1995) Transformation studies of Actinidia chinensis Planch. N Z J Crop Hortic Sci 23:407–413

    Google Scholar 

  • Fung RWM, Janssen BJ, Morris BA, Gardner RC (1998) Inheritance and expression of transgenes in kiwifruit. N Z J Crop Hortic Sci 26:169–179

    Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153

    Article  PubMed  CAS  Google Scholar 

  • Guo G, Maiwald F, Lorenzen P, Steinbiss H-H (1998) Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Res Commun 26:15–22

    Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Mechers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2:208–218

    Article  CAS  Google Scholar 

  • Huang ZF, Liang MY, Huang CG, Li RG (1983) A preliminary study on the character and nutritive composition of Actinidia fruits. Guihaia 3:53–56

    Google Scholar 

  • Janssen BJ, Gardner RC (1993) The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit. Plant Cell Rep 13:28–31

    Article  CAS  Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruit (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Kusaba S, Kano-Murakami Y, Matsuoka M, Matsuta N, Sakamoto T, Fukumoto M (1999) Expression of the rice homeobox gene, OSH1, causes morphological changes in transgenic kiwifruit. J Jpn Soc Hortic Sci 68:482–486

    CAS  Google Scholar 

  • Lee H, Humann JL, Pitrak JS, Cuperus JT, Parks TD, Whistler CA, Mok MC, Ream LW (2003) Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. Plant Physiol 133:966–977

    Article  PubMed  CAS  Google Scholar 

  • Liang CF (1980) Outline of taxonomy on Actinidia in China. Guangxi Plants 1:30–45

    Google Scholar 

  • Liao JS, Wang TC (1984) A preliminary investigation on the distribution and ecological characteristics of Chinese Actinidia in Fujian. J Fujian Agric College 13:291–298

    Google Scholar 

  • Meurer CA, Dinkins RD, Collins GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18:180–186

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nadolska-Ocrzyk A, Ocrzyk W (2000) Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol Breed 6:185–194

    Article  Google Scholar 

  • Nakamura Y, Sawada H, Kobayashi S, Nakajima I, Yoshikawa M (1999) Expression of soybean β-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants. Plant Cell Rep 18:527–532

    Article  CAS  Google Scholar 

  • Park SH, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80:1660–1664

    Article  PubMed  CAS  Google Scholar 

  • Rugini E, Caricato G, Muganu M, Taratufolo C, Camilli M, Cammilli C (1997) Genetic stability and agronomic evaluation of six-year-old transgenic kiwi plants for rol ABC and rol B genes. Acta Hortic 447:609–610

    Google Scholar 

  • Sciaky D, Montoya AL, Chilton MD (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1:238–253

    Article  PubMed  CAS  Google Scholar 

  • Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL, Ramming DW (1996) Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L.) plants. J Am Soc Hortic Sci 121:616–619

    Google Scholar 

  • Seal AG (2003) The plant breeding challenges to making kiwifruit a worldwide mainstream fresh fruit. Acta Hortic 610:75–80

    Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Uematsu C, Murase M, Ichikawa H, Imamura J (1991) Agrobacterium-mediated transformation and regeneration of kiwi fruit. Plant Cell Rep 10:286–290

    Article  CAS  Google Scholar 

  • Yamakawa Y, Chen LH (1996) Agrobacterium rhizogenes-mediated transformation of kiwifruit (Actinidia deliciosa) by direct formation of adventitious buds. J Jpn Soc Hortic Sci 64:741–747

    Article  Google Scholar 

  • Yao J, Cohen D, Atkinson R, Richardson K, Morris B (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep 14:407–412

    Article  CAS  Google Scholar 

  • Yao J, Wu J, Gleave AP, Morris BAM (1996) Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci 113:175–183

    Article  CAS  Google Scholar 

  • Yazawa M, Suginuma C, Ichikawa K, Kamada H, Akihama T (1995) Regeneration of transgenic plants from hairy root of kiwi fruit (Actinidia deliciosa) induced by Agrobacterium rhizogenes. Breeding Sci 45:341–244

    Google Scholar 

  • Zhang YJ, Qian YQ, Mu XJ, Cai QG, Zhou YL, Wei XP (1998) Plant regeneration from in vitro-cultured seedling leaf protoplasts of Actinidia eriantha Benth. Plant Cell Rep 17:819–821

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by New Zealand Foundation for Research, Science, and Technology, contract number C06X0207. The authors thank Shavindra Bajaj and Bart Janssen for critical reading of the manuscript, Alan Seal for providing winter dormant canes of A. eriantha, Julie Nicholls and Wade Wadasinghe for their efforts in maintaining plants in containment greenhouse, and Martin Heffer and Tim Holmes for their kind help with photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianchi Wang.

Additional information

Communicated by F. Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Ran, Y., Atkinson, R.G. et al. Transformation of Actinidia eriantha: A potential species for functional genomics studies in Actinidia . Plant Cell Rep 25, 425–431 (2006). https://doi.org/10.1007/s00299-005-0080-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0080-7

Keywords

Navigation