Skip to main content
Log in

Using real-time PCR to determine transgene copy number in wheat

  • Protocols
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Transgene copy number is usually determined by means of Southern blot analysis which can be time consuming and laborious. In this study, quantitative real-time PCR was developed to determine transgene copy number in transgenic wheat. A conserved wheat housekeeping gene,puroindoline-b, was used as an internal control to calculate transgene copy number. Estimated copy number in transgenic lines using real-time quantitative PCR was correlated with actual copy number based on Southern blot analysis. Real-time PCR can analyze hundreds of samples in a day, making it an efficient method for estimating copy number in transgenic wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ct:

threshold cycle

TAMRA:

tetramethylrhodamine

WSMV-CP:

wheat streak mosaic virus coat protein

References

  • Callaway AS, Abranches R, Scroggs J, Allen GC, and Thompson WF (2002) High throughput transgene copy number estimation by competitive PCR. Plant Mol Bio Rep 20: 265–277.

    Article  CAS  Google Scholar 

  • Chiang PW, Song WJ, Wu KY, Korenberg JR, Fogel EJ, Van Keuren ML, Lashkari D, and Kurnit DM (1996) Use of a fluorescent-PCR reaction to detect genomic sequence copy number and transcriptional abundance. Genome Res 6: 1013–1026.

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91: 3490–3496.

    Article  PubMed  CAS  Google Scholar 

  • Gautier MF, Aleman ME, Guirao A, Marion D, and Joudrier P (1994) Ttriticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25: 43–57.

    Article  PubMed  CAS  Google Scholar 

  • Gautier MF, Cosson P, Guirao A, Alary R, and Joudrier P (2000) Puroindoline genes are highly conserved in diploid ancestor wheat and related species but absent in tetraploid Triticum species. Plant Sci 153: 81–91.

    Article  CAS  Google Scholar 

  • Gentle A, Anastasopoulos F, and McBrien NA (2001) High resolution semi-quantitative real-time PCR without the use of a standard curve. Biotechniques 31: 502–508.

    PubMed  CAS  Google Scholar 

  • Giroux MJ and Morris CF (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95: 857–864.

    Article  CAS  Google Scholar 

  • Giroux MJ and Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline-a and b. Proc Natl Acad Sci USA 95: 6262–6266.

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Shiel PJ, McCarthy P, Berger PH, and Zemetra RS (1998) Transformation of soft white winter wheat (Triticum aestivum) for virus resistance. In: Proc 9th Inter Wheat Genet Symp (Slinkard AE ed). University Extension Press, Saskatoon, Sasketchewan, Canada. 3: 186–188.

    Google Scholar 

  • Heid CA, Stevens JJ, Livak KJ, and Williams PM (1996) Williams PM Real time quantitative PCR. Genome Res 6: 986–994.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R, Dollinger G, Walsh PS, and Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Nature Biotechnol 10: 413–417.

    Article  CAS  Google Scholar 

  • Higuchi R, Fockler C, Dollinger G, and Watson R (1993) Kinetic PCR: Real-time monitoring of DNA amplification reactions. Nature Biotechnol 11: 1026–1030.

    Article  CAS  Google Scholar 

  • Hollan PM, Abramson RD, Watson R, and Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5t’2-3t’ exonuclease activity ofThermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88: 7276–7280.

    Article  Google Scholar 

  • Ingham DJ, Beer S, Money S, and Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotech 31: 132–134, 136–140.

    CAS  Google Scholar 

  • Iyer LM, Kumpatla SP, Chandrasekharan MB, and Hall TC (2000) Transgene silencing in monocots. Plant Mol Biol 43: 323–346.

    Article  PubMed  CAS  Google Scholar 

  • Jung R, Soondrum K, and Neumaier M (2000) Quantitative PCR. Clin Chem Lab Med 38: 833–836.

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, and Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95: 7203–7208.

    Article  PubMed  CAS  Google Scholar 

  • Lee LG, Connell CR, and Bloch W (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucl Acids Res 21: 3761–3766.

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Flood SJ, Marmaro J, Giusti W, and Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4: 357–362.

    PubMed  CAS  Google Scholar 

  • Livak KJ and Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods 25: 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Raeymaekers L (2000) Basic principles of quantitative PCR. Mol Biotechnol 15: 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J and Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York.

    Google Scholar 

  • Schmidt MA and Parrott WA (2001) Quantitative detection of transgenes in soybean [Glycine max (L.) Merrill] and peanut (Arachis hypogaea L.) by real-time polymerase chain reaction. Plant Cell Rep 20: 422–428.

    Article  CAS  Google Scholar 

  • Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, and Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285: 194–204.

    Article  PubMed  CAS  Google Scholar 

  • Song P, Cai CQ, Skokut M, Kosegi BD, and Petolino JF (2002) Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERSTM-derived transgenic maize. Plant Cell Rep 20: 948–954.

    Article  CAS  Google Scholar 

  • Souza E, Sunderman DW, Whitmore J, and O’Brien K (1991) Registration of “Centennial” wheat. Crop Sci 31: 1095–1096.

    Article  Google Scholar 

  • Srivastava V, Anderson OD, and Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96: 11117–11121.

    Article  PubMed  CAS  Google Scholar 

  • Tranquilli G, Lijavetzky D, Muzzi G, and Dubcovsky J (1999) Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol Gen Genet 262: 846–850.

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, and Vernhetters S (1998) Transgene-induced gene silencing in plants. Plant J 16: 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Winer J, Jung CK, Shackel I, and Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Schogl D, Plaimauer B, and Mannhalter JW (1996) Quantitative multiple competitive PCR of HIV-1 DNA in a single reaction tube. Biotechniques 21: 480–484.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Hansen, J.L., Liu, Y. et al. Using real-time PCR to determine transgene copy number in wheat. Plant Mol Biol Rep 22, 179–188 (2004). https://doi.org/10.1007/BF02772725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02772725

Key words

Navigation