Skip to main content
Log in

High-efficiency propagation of Chinese water chestnut [Eleocharis dulcis (Burm.f.) Trin. ex Hensch] using a temporary immersion bioreactor system

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Several studies have reported different propagation methods for the Chinese water chestnut [Eleocharis dulcis (Burm.f.) Trin. ex Hensch]. To date, none of these methods have efficiently achieved large-scale plantlet production using minimal labor input. The present study investigated the propagation of Chinese water chestnut shoot tips derived from corm and creeping rhizomes in a temporary immersion bioreactor system (TIBS) compared with propagation using conventional semi-solid medium methods. We evaluated the regeneration capacity of the corm and creeping rhizome shoot tips of E. dulcis Guiti No. 2 sp. nov. and found that culturing under optimized TIBS conditions (15 min of immersion into nutrient medium every 8 h) produced the highest multiplication rate (36.5 times) and shoot-forming capacity (SFC, 68.9), and reduced the vitrification rate. Creeping rhizome shoot tips had slightly higher SFC than corm shoot tips; the highest shoot multiplication rate of 43.7 times in TIBS was obtained using Murashige–Skoog (MS) medium containing 4 mg L−1 6-benzylaminopurine and 0.5 mg L−1 1-naphthaleneacetic acid (NAA). These optimized conditions were applied to corm shoot tips of E. dulcis Guiti No. 1 var. nov., E. dulcis Guiti No. 2 sp. nov., and E. dulcis Guifengti No. 1 sp. nov. Root formation was observed during the shoot multiplication stage on semi-solid MS medium; however, root formation was not noted during the shoot multiplication stage in TIBS. While TIBS produced a higher multiplication rate and SFC indices, there were no significant differences in average number of shoots per explant between TIBS and semi-solid medium. We also evaluated the effects of different immersion frequencies and NAA concentrations on TIBS propagation of E. dulcis Guiti No. 2 sp. nov. shoot tips by measuring the rooting percentage, average number of roots (length ≥ 3 cm) per explant, maximum root length, and root-forming capacity (RFC). The results showed that the medium containing 2.0 mg L−1 NAA at the rooting stage produced the best-developed root systems with the highest rooting percentage, maximum root length, and highest RFC (75.8 %, 8.5 cm, and 3.8, respectively); it also reduced the immersion frequency. The optimized conditions produced plantlets that had a greater capacity to acclimatize after transfer to the greenhouse. E. dulcis Guiti No. 1 var. nov. plantlets had the highest survival rate (95 %), largest diameters, and highest number of creeping rhizomes. The results of this study demonstrate that TIBS is a reliable and efficient method for large-scale propagation of Chinese water chestnut plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Çiftçi YO (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Organ Cult 117:65–76

    Article  CAS  Google Scholar 

  • Albarran J, Bertrand B, Lartaud M, Etienne H (2005) Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue Organ Cult 81:27–36

    Article  CAS  Google Scholar 

  • Alvard D, Cote F, Teisson C (1993) Comparison of method of liquid medium culture for banana micropropagation. Effect of temporary immersion systems on explants. Plant Cell Tissue Organ Cult 32:55–60

    Article  Google Scholar 

  • Aragón EC, Escalona M, Rodriguez R, Cañal JM, Capote I, Pina D, González-Olmedo J (2010a) Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. In Vitro Cell Dev Biol Plant 46:89–94

    Article  Google Scholar 

  • Aragón CE, Escalona M, Rodriguez R, Cañal MJ, Capote I, Pina D, González-Olmedo J (2010b) Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. In Vitro Cell Dev Biol-Plant 46(1):89–94

    Article  Google Scholar 

  • Arencibia AD, Vergara C, Quiroz K, Carrasco B, García-Gonzales R (2013) Establishment of photomixotrophic cultures for raspberry micropropagation in temporary immersion bioreactors (TIBs). Sci Hortic 160:49–53

    Article  CAS  Google Scholar 

  • Ashraf MF, Aziz MA, Stanslas J, Kadir MA (2013) Optimization of immersion frequency and medium substitution on microtuberization of Chlorophytum borivilianum in RITA system on production of saponins. Process Biochem 48:73–77

    Article  CAS  Google Scholar 

  • Cai B, Chen L, Jiang W, Wei S, Guo C, Bing S, Gui J (2012) The current situation of the development of Guangxi water chestnut industry and suggestions. J China Changjiang Veg 18:98–100

    Google Scholar 

  • Chen R (1999) Water chestnut fruit: drug two affordable. J China PLA Health 1999(2):29

    Google Scholar 

  • De Klerk GJ, Ter Brugge J (2011) Micropropagation of dahlia in static liquid medium using slow-release tools of medium ingredients. Sci Hortic 127:542–547

    Article  Google Scholar 

  • Debergh P, Aitken-Christie J, Cohen D, Grout B, Von Arnold S, Zimmerman R, Ziv M (1992) Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tissue Organ Cult 30:135–140

    Article  Google Scholar 

  • Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748

    Article  CAS  Google Scholar 

  • Escalona M, Samson G, Borroto C, Desjardins Y (2003) Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell Dev Biol Plant 39:651–656

    Article  CAS  Google Scholar 

  • Feng Li, Yiman LIU, Minghua LI, Weidong KE (2009). Production and research of chinese water chestnut in the United Sates. J China Chang Veg (16):19–22

  • Gatica-Arias A, Weber G (2013) Biotechnology genetic transformation functional genomics genetic transformation of hop (Humulus lupulus L. cv. Tettnanger) by particle bombardment and plant regeneration using a temporary immersion system. In Vitro Cell Dev Biol Plant 49:656–664

    Article  CAS  Google Scholar 

  • Gaussier P, Revel A, Banquet JP, Babeau V (2002) From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol Cybern 86(1):15–28

  • Gollagunta V, Adelberg JW, Rieck J, Rajapakse N (2004) Sucrose concentration in liquid media affects soluble carbohydrates, biomass and storage quality of micropropagated hosta. Plant Cell Tissue Organ Cult 77:125–131

    Article  CAS  Google Scholar 

  • Gupta SD, Ibaraki Y (2006) Plant tissue culture engineering. focus on biotechnology, vol 6. Springer, Netherlands, p 477

    Book  Google Scholar 

  • Hang L, Huang Z, Liao S, Guoxiu SU, Huang J, Luo Y (2007) Rapid propagation technology research and application of water chestnut and detoxification of tissue culture. J China Jiangsu Agric Sci 6:23–27

    Google Scholar 

  • Hassannejad S, Bernard F, Mirzajani F, Gholami M (2012) SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol Biochem 51:40–46

    Article  CAS  PubMed  Google Scholar 

  • Hempfling T, Preil W (2005) Application of a temporary immersion system in mass propagation on Phalaenopsis. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht Netherlands, pp 231–242

    Chapter  Google Scholar 

  • Hvoslef Eide AK, Olsen OAS, Lyngved R, Munster C, Heyerdahl PH (2005) Bioreactor design for propagation of somatic embryos. In: Liquid culture systems for in vitro plant propagation. Springer, Berlin, pp 41–59

  • Ivanov I, Georgiev V, Georgiev M, Ilieva M, Pavlov A (2011) Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology. Appl Biochem Biotechnol 163:268–277

    Article  CAS  PubMed  Google Scholar 

  • Jo EA, Tewari RK, Hahn EJ, Paek KY (2009) In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell Tissue Organ Cult 96:307–315

    Article  CAS  Google Scholar 

  • Kevers C, Franck T, Strasser R, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult 77:181–191

    Article  Google Scholar 

  • Kokotkiewicz A, Bucinski A, Luczkiewicz M (2014) Xanthone, benzophenone and bioflavonoid accumulation in Cyclopia genistoides (L.) Vent. (honeybush) shoot cultures grown on membrane rafts and in a temporary immersion system. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-014-0586-1

    Google Scholar 

  • Lambardi M, Sharma KK, Thorpe TA (1993) Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). In vitro Cell Dev-Plant 29:189–199

    Article  Google Scholar 

  • Lambardi M, Sharma KK, Thorpe TA (2011) Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). In Vitro Cell Dev Biol-Plant 29(4):189–199

    Article  Google Scholar 

  • Léon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  PubMed  Google Scholar 

  • Lin H, Zhou H, Zhou Jianjin (2011) Water chestnut tissue culture and rapid propagation in discussion. J China Zhejiang Agric Sci 6:1241–1243

    Google Scholar 

  • Liu Y, Gang Q, Jing S, Yang LT, Luo RH, Li XQ, Lin GM, Zou Y, Li YR (2010) Micro-propagation of banana (Musa AAA Cavendish var. Williams B6) in temporary immersion bioreactor system (TIBS). J China Fruit Sci 27(6):1010–1013

    Google Scholar 

  • Lorenzo J, González B, Escalona M, Teisson C, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54:197–200

    Article  CAS  Google Scholar 

  • Ma X (2002) Fruit and vegetable medicine words water chestnut. J China Diet Ther 2:7

    CAS  Google Scholar 

  • Ma G (2010) Water chestnut international trade review and prospect of agricultural economy. J China Mon 10:56–62

    Google Scholar 

  • Mallón R, Vieitez AM, Vidal N (2013) High-efficiency agrobacterium-mediated transformation in Quercus robur: selection by use of a temporary immersion system and assessment by quantitative PCR. Plant Cell Tissue Organ Cult 114(2):171–185

    Article  Google Scholar 

  • Martínez-Bonfil B, Salcedo-Morales G, López-Laredo A, Ventura-Zapata E, Evangelista-Lozano S, Trejo-Tapia G (2011) Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth. Plant Cell Tissue Organ Cult 107:195–203

    Article  Google Scholar 

  • Mehdi F, AshraMaheran AA, Kadir MA, Stanslas J, Michoux F, Ahmad N, Hennig A, Nixon PJ, Warzecha H (2013) Production of leafy biomass using temporary immersion bioreactors: an alternative platform to express proteins in transplastomic plants with drastic phenotypes. Planta 237(3):903–908

    Article  Google Scholar 

  • Michoux F, Ahmad N, Hennig A, Nixon P, Warzecha H (2013) Production of leafy biomass using temporary immersion bioreactors: an alternative platform to express proteins in transplastomic plants with drastic phenotypes. Plant Biotechnol Rep Planta 237:903–908

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised media for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niemenak N, Saare-Surminski K, Rohsius C, Omokolo ND, Lieberei R (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analysis of free amino acids in different tissues. Plant Cell Rep 27:667–676

    Article  CAS  PubMed  Google Scholar 

  • Niemenak N, Noah AM, Omokolo DN (2013) Micropropagation of cocoyam (Xanthosoma sagittifolium L. Schott) in temporary immersion bioreactor. Plant Biotechnol Rep 7(3):383–390

    Article  Google Scholar 

  • Omokolo ND, Boudjeko T, Tsafack TJJ (2003) In vitro tuberization of Xanthosoma sagittifolium (L.) Schott: effects of phytohormones, sucrose, nitrogen and photoperiod. Sci Hortic 98:337–345

    Article  CAS  Google Scholar 

  • Perez M, Bueno MA, Escalona M, Toorop P, Rodrguez R, Canal MJ (2013) Temporary immersion systems (RITA) for the improvement of corkoak somatic embryo genetic culture proliferation and somatic embryo production. Trees 27:1277–1284

    Article  Google Scholar 

  • Preil W (2005) General introduction: a personal reflection on the use of liquid media for in vitro culture. In: Preil W, Hvoslef-Eide AK (eds) Liquid culture systems for in vitro plant propagation. Springer, Berlin, pp 1–18

    Chapter  Google Scholar 

  • Quiala E, Barbón R, Jimenez E, De Feria M, Chávez M, Capote A, Pérez N (2006) Biomass production of cymbopogon citrates (D.C) stapf, a medicinal plant in temporary immersion systems. In Vitro Cell Dev Biol Plant 42(3):298–300

  • Quiala E, Cañal MJ, Meijón M, Rodríguez R, Chávez M, Valledor L, Barbón R (2012a) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Organ Cult 109(2):223–234

    Article  CAS  Google Scholar 

  • Quiala E, Canal MJ, Meijon M, Rodriguez R, Chavez M, Valledor L, Feria M, Barbon R (2012b) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Organ Cult 109:223–234

    Article  CAS  Google Scholar 

  • Roels S, Escalona M, Cejas I, Noceda C, Rodriguez R, Canal MJ, Sandoval J, Debergh P (2005) Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult 82:57–65

    Article  CAS  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiol Plant 120:152–161

    Article  CAS  PubMed  Google Scholar 

  • Schönherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491

    Article  PubMed  Google Scholar 

  • Sorvari S, Mäkeläinen R, Ahanen K, Toldi O (2005) Membranes to reduce adherence of somatic embryos to the cell lift impeller of a bioreactor. In: Liquid culture systems for in vitro plant propagation. Springer, Berlin, pp 117–125

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryo genesis. Ann Bot 108:1463–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valdez-Tapia R, Capataz-Tafur J, López-Laredo AR, Trejo-Espino JL, Trejo-Tapia G (2014) Effect of immersion cycles on growth, phenolics content, and antioxidant properties of Castilleja tenuiflora shoots. In Vitro Cell Dev Biol-Plant 50(4):471–477

    Article  CAS  Google Scholar 

  • Viu AFM, Viu MAO, Tavares AR, Vianello F, Lima GPP (2009) Endogenous and exogenous polyamines in the organogenesis in Curcuma longa L. Sci Hortic 121:501–504

    Article  CAS  Google Scholar 

  • Wilken D, Gonzalez EJ, Gerth A, Gómez-Kosky R, Schumann A, Claus D (2014) Effect of immersion systems, lighting, and TIS designs on biomass increase in micropropagating banana (Musa spp. cv’.Grande naine’AAA). In Vitro Cell Dev Biol-Plant. doi:10.1007/s11627-014-9605-5

    Google Scholar 

  • Xing X (2002) Southern ginseng—water chestnut. J China Veg 5:40

    Google Scholar 

  • Yan H, Liang C, Li Y (2010) Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell Tissue Organ Cult 103:131–135

    Article  Google Scholar 

  • Yang L, Qin G, Su J, Yang LT, Luo RH, Li XQ, Lin GM, Zou Y, Li YR (2010) Micropropagation of banana (Musa AAA Cavendish var. Williams B6) in temporary immersion bioreactor system(TIBS). J China Fruit Sci 27(6):1010–1013

  • Zhang A (2001) Medical english food of Eleocharis. J China Shandong Food Sci Technol 12:25

    CAS  Google Scholar 

  • Zhao Y, Sun W, Wang Y, Saxena PK, Liu CZ (2012) Improved mass multiplication of Rhodiola crenulata shoots using temporary immersion bioreactor with forced ventilation. Appl Biochem Biotechnol 166:1480–1490

    Article  CAS  PubMed  Google Scholar 

  • Ziv M, Hvoslef-Eide AK, Preil W (eds) (2005) Simple bioreactors for mass propagation of plants in liquid culture systems for in vitro plant propagation. Springer, Dordrecht, p 588

    Google Scholar 

Download references

Acknowledgments

Financial assistance was provided by the China National Science and Technology Support Program of breeding new varieties of aquatic vegetables and establishing a rapid propagation system (2012BAD27B01) and by the Biotechnology Research Institute. The authors express gratitude to suggestions and assistance given by Professor Lijuan Chen, Ph.D.; Liu Yang, Ph.D.; Cong Luo; Professor Xinhua He; Associate Professor Shaolong Wei; and Zhicheng Lin. We thank Binghua Cai, Jun Tan, and Wen Jiang for performing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Jiang, W., Wei, S. et al. High-efficiency propagation of Chinese water chestnut [Eleocharis dulcis (Burm.f.) Trin. ex Hensch] using a temporary immersion bioreactor system. Plant Cell Tiss Organ Cult 121, 761–772 (2015). https://doi.org/10.1007/s11240-015-0732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0732-4

Keywords

Navigation