Skip to main content
Log in

Somatic embryogenesis and Agrobacterium-mediated transformation of Gladiolus hybridus cv. ‘Advance Red’

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Stable and efficient Agrobacterium-mediated transformation of Gladiolus hybridus cv. ‘Advance Red’ was established via a somatic embryogenesis regeneration system in this study. Treatment with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea was sufficient to induce embryogenic callus and somatic embryogenesis in G. hybridus ‘Advance Red’. Cormel slices were used as explants and pre-cultured for 5 days prior to selection culture with 9.48 μM hygromycin and 0.52 mM cefotaxime. Treated slices were inoculated with Agrobacterium stain GV3101 harboring a binary vector, pCAMBIA1301, containing the β-glucuronidase (gus) reporter and hygromycin phosphotransferase genes (hpt). 10 min of infection was determined as the optimal time for transformation. Compared with the normal 3-day co-cultivation period, prolonged co-culture for 12 days led to significantly higher transient gus expression rate (50.52 ± 2.83 %). Permanent expression of gus was observed in leaves, roots and whole plantlets. T-DNA insertion was further confirmed using PCR and Southern blot analyses. Our data collectively indicate that extended pre-cultivation and co-cultivation improve transformation efficiency, and the somatic embryogenic regeneration system effectively facilitates the transformation of G. hybridus. This newly developed transformation system may be successfully applied for functional analysis of genes and quality modifications in G. hybridus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

CaMV 35S:

Cauliflower mosaic virus 35S promoter

gus :

β-Glucuronidase

hpt :

Hygromycin phosphotransferase

IBA:

Indole-3-butyric acid

LB:

Luria–Bertani

MES:

4-Morpholineethanesulfonic acid hydrate

MS:

Murashige and Skoog

NOS poly A:

Nopaline synthase poly A terminator

6-BA:

6-Benzylaminopurine

TDZ:

N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea

OD600 :

Optical density at a wavelength of 600 nm

PCR:

Polymerase chain reaction

vir :

Virulence genes of Agrobacterium tumefaciens

References

  • Alsheikh M, Suso HP, Robson M, Battey N, Wetten A (2002) Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F. v. semperflorens. Plant Cell Rep 20(12):1173–1180

    Article  CAS  Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep 19(5):435–442

    Article  CAS  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. 1. The mode of phage liberation by lysogenic Escherichia-coli. J Bacteriol 62(3):293–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolton G, Nester E, Gordon M (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232(4753):983–985

    Article  CAS  PubMed  Google Scholar 

  • Celikkol Akcay U, Mahmoudian M, Kamci H, Yucel M, Oktem HA (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik). Plant Cell Rep 28(3):407–417

    Article  CAS  Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tissue Organ Cult 70(1):51–60

    Article  CAS  Google Scholar 

  • Chattopadhyay T, Roy S, Mitra A, Maiti M (2011) Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Rep 30(4):485–493

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115(3):971–980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chopra R, Aparna, Saini R (2012) Use of sonication and vacuum infiltration for Agrobacterium—mediated transformation of an Indian lentil (Lens culinaris Medik.) cultivar. Sci Hortic 143(0):127–134

    Article  CAS  Google Scholar 

  • Conner AJ, Dommisse EM (1992) Monocotyledonous plants as hosts for Agrobcterium. Int J Plant Sci 153(4):550–555

    Article  Google Scholar 

  • Deng XY, Wei ZM, An HL (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11(2):156–160

    Article  CAS  PubMed  Google Scholar 

  • Domínguez A, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19(4):427–433

    Article  Google Scholar 

  • Ghosh A, Ganapathi TR, Nath P, Bapat VA (2009) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tiss Organ Cult 97(2):131–139

    Article  Google Scholar 

  • Glogowski W, Galsky AG (1978) Agrobacterium-tumefaciens site the attachment as a necessary prerequisite for crown gall tumor formation on potato disk. Plant Physiol 61(6):1031–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han KH, Meilan R, Ma C, Strauss SH (2000) An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Rep 19(3):315–320

    Article  CAS  Google Scholar 

  • Hatanaka T, Choi YE, Kusano T, Sano H (1999) Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 19(2):106–110

    Article  CAS  Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61(6):1567–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horsch RB, Klee HJ (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of T-DNA borders in the transfer process. Proc Natl Acad Sci USA 83(12):4428–4432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science (New York, NY) 227(4691):1229–1231

    Article  CAS  Google Scholar 

  • Hossain Z, Kalam Azad Mandal A, Kumar Datta S, Krishna Biswas A (2006) Decline in ascorbate peroxidase activity—a prerequisite factor for tepal senescence in gladiolus. J Plant Physiol 163(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14(6):745–750

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32(8):1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Joh LD, Wroblewski T, Ewing NN, VanderGheynst JS (2005) High-level transient expression of recombinant protein in lettuce. Biotechnol and Bioeng 91(7):861–871

    Article  CAS  Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J (1995a) Stable transformation of Gladiolus by particle gun bombardment of cormels. Plant Sci 110(1):105–111

    Article  CAS  Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J, Lawson R (1995b) Stable transformation of Gladiolus using suspension cells and callus. J Am Soc Hortic Sci 120(2):347–352

    Google Scholar 

  • Kamo K, Kim A-Y, Park SH, Joung YH (2012) The 5′ UTR-intron of the Gladiolus polyubiquitin promoter GUBQ1 enhances translation efficiency in Gladiolus and Arabidopsis. BMC Plant Biol 12:79

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agobacterium-mediated transformation in the green alga Haematococcus Pluvialis (Chlorophyceae, Volvocales). J Psychol 45(3):642–649

    CAS  Google Scholar 

  • Ketchum RB, Wherland L, Croteau R (2007) Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures. Plant Cell Rep 26(7):1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19(10):989–993

    Article  CAS  Google Scholar 

  • Lin YJ, Zhang Q (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23(8):540–547

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Yi J, Zhong XH, Lian QL, Khan MA, Cao X, Li XX, Gao MW, Wu J, Chen J, Yi MF (2012) Cloning, characterization and expression analysis of key genes involved in ABA metabolism in Gladiolus cormels during storage. Sci Hortic 143:115–121

    Article  CAS  Google Scholar 

  • Massey LM (1928) Dry rot of gladiolus corms. Phytopathology 18(6):519–529

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5(2):81–84

    Article  CAS  PubMed  Google Scholar 

  • McHughen A, Jordan M, Feist G (1989) A preculture period prior to Agrobacterium inoculation increases production of transgenic plants. J Plant Physiol 135(2):245–248

    Article  Google Scholar 

  • Messens E, Dekeyser R, Stachel SE (1990) A nontransfomable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proc Natl Acad Sci USA 87(11):4368–4372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15(3):473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Victor J, Singh R, Fletcher RA, Saxena P (1996) In vitro regeneration of chickpea (Cicer arietinum L.): stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Regul 19(3):233–240

    Article  CAS  Google Scholar 

  • Nanasato Y, K-i Konagaya, Okuzaki A, Tsuda M, Tabei Y (2013) Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Rep 7(3):267–276

    Article  PubMed Central  PubMed  Google Scholar 

  • Pozueta-Romero J, Houlné G, Cañas L, Schantz R, Chamarro J (2001) Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult 67(2):173–180

    Article  CAS  Google Scholar 

  • Rai G, Rai N, Kumar S, Yadav A, Rathaur S, Singh M (2012) Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. Vitro Cell Dev Biol Plant 48(5):565–578

    Article  CAS  Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Nat Biotechnol 8(1):33–38

    Article  CAS  Google Scholar 

  • Rugkhla A, Jones MGK (1998) Somatic embryogenesis and plantlet formation in Santalum album and S. spicatum. J Exp Bot 49(320):563–571

    Article  CAS  Google Scholar 

  • Saha P, Datta K, Majumder S, Sarkar C, China S, Sarkar S, Sarkar D, Datta S (2014) Agrobacterium mediated genetic transformation of commercial jute cultivar Corchorus capsularis cv. JRC 321 using shoot tip explants. Plant Cell Tiss Organ Cult 118:1–14

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual second edtion vols. 1 2 AND 3. Sambrook, J., E. F. Fritsch and T. Maniatis. Molecular Cloning: A Laboratory Manual, Second Edition, Vols. 1, 2 and 3. Xxxix + Pagination Varies(Vol. 1); Xxxiii + Pagination Varies(Vol. 2): Xxxii + Pagination Varies(Vol. 3) Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, USA. Illus. Paper

  • Singh ND, Sahoo L, Sarin NB, Jaiwal PK (2003) The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp). Plant Sci 164(3):341–347

    Article  CAS  Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35(2):301–309

    Article  Google Scholar 

  • Song G-q, Walworth A (2013) Agrobacterium tumefaciens-mediated transformation of Atropa belladonna. Plant Cell Tissue Organ Cult 115(1):107–113

    Article  CAS  Google Scholar 

  • Stefaniak B (1994) Somatic embryogenesis and plant regeneration of Gladiolus (Gladiolus hort.). Plant Cell Rep 13(7):386–389

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30(3):425–436

    Article  CAS  PubMed  Google Scholar 

  • Sun H-J, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47(3):426–431

    Article  CAS  PubMed  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47(6):969–976

    Article  CAS  PubMed  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23(12):780–789

    Article  CAS  PubMed  Google Scholar 

  • Valvekens D, Montagu MV, Lijsebettens MV (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85(15):5536–5540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell, Tissue Organ Cult 100(1):73–81

    Article  Google Scholar 

  • Visser C, Qureshi JA, Gill R, Saxena PK (1992) Morphoregulatory role of thidiazuron: substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99(4):1704–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22(4):274–281

    Article  PubMed  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21(7):659–668

    CAS  PubMed  Google Scholar 

  • Wu H, Doherty A, Jones H (2009) Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. In: Jones HD, Shewry PR (eds) Transgenic wheat, barley and oats, vol 478. Methods in Molecular Biology™. Humana Press, pp 93–103

  • Xu Z, Hao J, He X, Yi M (2009) Callus induction and plant regeneration of Gladiolus hybridus Hort. Plant Physiol Commun 45(5):473–478

    Google Scholar 

  • Yamada T, Teraishi M, Hattori K, Ishimoto M (2001) Transformation of azuki bean by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 64(1):47–54

    Article  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44(6):789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li Z, Cui J, Henny R, Gray D, Xie J, Chen J (2013) Efficient somatic embryogenesis and Agrobacterium-mediated transformation of pothos (Epipremnum aureum) ‘Jade’. Plant Cell Tissue Organ Cult 114(2):237–247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctoral Fund of Ministry of Education of China (20120008110006) and National Natural Science Foundation of China (31171991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Yi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2014_639_MOESM1_ESM.tif

Schematic representation of hpt and gus gene expression cassettes in the binary vector, pCAMBIA 1301, used in Gladiolus hybridus transformation. The T-DNA region of the vector contains the hygromycin expression cassette (CaMV 35S: hpt: poly A) and uid gene expression cassette (CaMV 35: gus: nos poly A). CaMV 35S cauliflower mosaic virus 35S promoter; hpt hygromycin phosphotransferase II; poly A cauliflower mosaic virus 35S poly A terminator; gus beta-glucuronidase gene; nos poly A nopaline synthase poly A terminator. The pink bar represents DIG primers and the blue bar indicates PCR primers (TIFF 1851 kb)

11240_2014_639_MOESM2_ESM.tif

Characteristics of explants and effects of hygromycin a Explant; b Callus generated from fibrovascular tissue and adjacent parenchymatous tissue; c Explant and its embryogenic callus; d Section of an explant; e, f, g, h, i Explants cultured in MS + 0, 2.5, 5, 7.5, 15 mg l−1 hygromycin at 30 days, respectively. a, b, c, d bar = 1 mm; e, f, g, h, i bar = 1 cm (TIFF 39445 kb)

11240_2014_639_MOESM3_ESM.tif

A Overall GUS-stained plantlets (no chimeras), bar = 1 cm; b and c Partially stained plantlets (chimeras), bar = 500 μm (TIFF 12200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, C., Seng, S. et al. Somatic embryogenesis and Agrobacterium-mediated transformation of Gladiolus hybridus cv. ‘Advance Red’. Plant Cell Tiss Organ Cult 120, 717–728 (2015). https://doi.org/10.1007/s11240-014-0639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0639-5

Keywords

Navigation