Skip to main content
Log in

Overexpression of PeHSF mediates leaf ROS homeostasis in transgenic tobacco lines grown under salt stress conditions

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Transcriptional responses of a heat-shock transcription factor from the salt-resistant Populus euphratica, PeHSF, were assessed in transgenic tobacco seedlings subjected to salinity stress. Moreover, their relevance to NaCl-induced anti-oxidative defense responses in higher plants was also explored. Expression of PeHSF was induced by high-salinity (150 mM NaCl) in leaves and callus cultures of P. euphratica. The salt-stimulated PeHSF expression in P. euphratica callus cultures was markedly inhibited by DPI (an inhibitor of plasma membrane NADPH oxidase) and LaCl3 (an inhibitor of plasma membrane Ca2+-permeable channels), indicating the involvement of reactive oxygen species (ROS) and Ca2+ in HSF activation under NaCl stress. Sequence analysis showed that PeHSF is a typical class A HSF in higher plants. PeHSF overexpression in tobacco significantly improved the salt tolerance of transgenic plants, in term of seed germination and root growth. Compared to the wild-type plants, the PeHSF-transgenic lines exhibited an increased capacity to control ROS homeostasis, but not an enhanced capacity to retain ionic homeostasis under salt stress. PeHSF expression in tobacco enhanced the activities of ascorbate peroxidase, glutathione peroxidase, and glutathione reductase, due to upregulated transcriptional levels. We conclude that PeHSF plays a crucial role in ROS detoxification under salt stress, rather than in maintenance of the K+/Na+. It is likely that the salt-induced H2O2 and cytosolic Ca2+ led to transcriptional activation of HSF, which initiated the transcription of genes encoding antioxidant enzymes in P. euphratica, thus contributing to ROS homeostasis control under saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528

    Article  PubMed  CAS  Google Scholar 

  • Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13:519–527

    Article  PubMed  CAS  Google Scholar 

  • Bharti K, Von Koskull-Doring P, Bharti S, Kumar P, Tintschl-Korbitzer A, Treuter E, Nover L (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16:1521–1535

    Article  PubMed  CAS  Google Scholar 

  • Boscheinen O, Lyck R, Queitsch C, Treuter E, Zimarino V, Scharf KD (1997) Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae. Mol Gen Genet 255:322–331

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Li JK, Wang SS, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees 15:186–194

    Article  CAS  Google Scholar 

  • Chen SL, Li J, Wang T, Wang S, Polle A, Hüttermann A (2002a) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21:224–233

    Article  CAS  Google Scholar 

  • Chen SL, Li JK, Fritz E, Wang SS, Hüttermann A (2002b) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage 168:217–230

    Article  Google Scholar 

  • Chen SL, Li JK, Wang SS, Fritz E, Hüttermann A, Altman A (2003) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can J For Res 33:967–975

    Article  CAS  Google Scholar 

  • Cheong Y, Chang H, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka-Verner E, Yuan CX, Scharf KD, Englich G, Gurley WB (2000) Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Mol Biol 43:459–471

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka-Verner E, Pan S, Salem T, Gurley WB (2004) Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol 56:57–75

    Article  PubMed  CAS  Google Scholar 

  • Damberger FF, Pelton JG, Harrison CJ, Nelson HC, Wemmer DE (1994) Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Sci 3:1806–1821

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • Ding MQ, Hou PC, Shen X, Wang MJ, Deng SR, Sun J, Xiao F, Wang RG, Zhou XY, Lu CF, Zhang DQ, Zheng XJ, Hu ZM, Chen SL (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269

    Article  PubMed  CAS  Google Scholar 

  • Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12:265–278

    PubMed  Google Scholar 

  • Györgyey J, Gartner A, Németh K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol 16:999–1007

    Article  PubMed  Google Scholar 

  • Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263:224–227

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    PubMed  CAS  Google Scholar 

  • Janz D, Behnke K, Schnitzler J-P, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150

    Article  PubMed  Google Scholar 

  • Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant, Cell Environ 26:929–939

    Article  CAS  Google Scholar 

  • Larson JS, Schuetz TJ, Kingston RE (1988) Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335:372–375

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Won SH, Lee HS, Miyao M, Chung W-II, Kim IJ, Jo J (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245:283–290

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Seri L, Levine A (2007) Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51:185–197

    Article  PubMed  CAS  Google Scholar 

  • Li B, Liu H, Sun D, Zhou R (2004) Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45:627–634

    Article  PubMed  CAS  Google Scholar 

  • Li C, Chen Q, Gao X, Qi B, Chen N, Xu S, Chen J, Wang X (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China (Ser C, Life Sci) 48:540–550

    Article  CAS  Google Scholar 

  • Liu NY, Ko SS, Yeh KC, Charng YY (2006) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci 170:976–985

    Article  CAS  Google Scholar 

  • Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell Environ 34:738–751

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Milioni D, Franz G, Sung R, Hatzopoulos P (2001) Gene expression during heat-shock in embryogenic carrot cell lines. Plant Cell, Tissue Organ Cult 65:221–228

    Article  CAS  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nover L, Scharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperon 1:215–223

    Article  CAS  Google Scholar 

  • Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperon 6:177–189

    Article  CAS  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    Article  PubMed  CAS  Google Scholar 

  • Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi J, Jiang XN, Polle A (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762–1772

    Article  PubMed  CAS  Google Scholar 

  • Panchuk I, Volkov R, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  PubMed  CAS  Google Scholar 

  • Rabindran S, Haroun R, Clos J, Wisniewski J, Wu C (1993) Regulation of heat-shock factor trimer formation: role of the conserved leucine zipper. Science 259:230–234

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  PubMed  CAS  Google Scholar 

  • Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperatures—a possible role in protecting against chilling injuries. Plant Physiol 117:651–658

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss J, Kunert O, Gase U, Scharf KD, Nover L, Ruterjans H (1996) Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. Eur J Biochem 236:911–921

    Article  PubMed  CAS  Google Scholar 

  • Sun WN, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009a) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Dai SX, Wang RG, Chen SL, Li NY, Zhou XY, Lu CF, Shen X, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009b) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 29:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Li LS, Liu MQ, Wang MJ, Ding MQ, Deng SR, Lu CF, Zhou XY, Shen X, Zheng XJ, Chen SL (2010a) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell, Tissue Organ Cult 103:205–215

    Article  CAS  Google Scholar 

  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL (2010b) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant, Cell Environ 33:943–958

    Article  CAS  Google Scholar 

  • Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S (2012) Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells. PLoS ONE 7:e53136

    Article  PubMed  CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  PubMed  CAS  Google Scholar 

  • Vuister GW, Kim SJ, Wu C, Bax A (1994) NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF-3/forkhead families of transcription factors. Biochemistry 33:10–16

    Article  PubMed  CAS  Google Scholar 

  • Wang RG, Chen SL, Deng L, Fritz E, Hüttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581–591

    Article  CAS  Google Scholar 

  • Wang RG, Chen SL, Zhou XY, Shen X, Deng L, Zhu HJ, Shao J, Shi Y, Dai SX, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Deng S, Ding M, Sun J, Wang M, Zhu H, Han Y, Shen Z, Jing X, Zhang F, Hu Y, Shen X, Chen SL (2013) Overexpression of a poplar two-pore K+ channel enhances salinity tolerance in tobacco cells. Plant Cell, Tissue Organ Cult 112:19–31

    Article  CAS  Google Scholar 

  • Wu QY, Lin J, Liu JZ, Wang XF, Lim W, Oh M, Park J, Rajashekar CB, Whitham SA, Cheng NH, Hirschi KD, Park S (2012) Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol J 10(8):945–955

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Wang Y, Wang D (2007) Role of nitric oxide and hydrogen peroxide during the salt resistance response. Plant Signal Behav 2:473–474

    Article  PubMed  Google Scholar 

  • Zhong M, Orosz A, Wu C (1998) Direct sensing of heat shock and oxidation by Drosophila heat shock transcription factor. Mol Cell 2:101–108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported jointly by the National Natural Science Foundation of China (Grant Nos. 31270654, 31170570, and 31200470), the Key Grant Project of the Chinese Ministry of Education (Grant No. 2013001), the Beijing Natural Science Foundation (Grant No. 6112017), the Program of Introducing Talents of Discipline to Universities (111 Project, Grant No. B13007), Fundamental Research Funds for the Central Universities (Grant Nos. JC2011-2 and TD-2012-04), the Foundation for the Supervisors of Beijing Excellent Doctoral Dissertations (Grant No. YB20081002201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoliang Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Z., Ding, M., Sun, J. et al. Overexpression of PeHSF mediates leaf ROS homeostasis in transgenic tobacco lines grown under salt stress conditions. Plant Cell Tiss Organ Cult 115, 299–308 (2013). https://doi.org/10.1007/s11240-013-0362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0362-7

Keywords

Navigation