Skip to main content
Log in

Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. carotovorum

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit microbial polygalacturonase (PG) activity. In this study, we cloned five PGIP genes from Chinese cabbage (Brassica rapa ssp. pekinensis). Reverse transcription PCR expression analysis showed that the accumulation of BrPGIP transcripts differed among various tissues and in response to biotic (bacterial innoculation) and abiotic stresses (i.e., wounding, jasmonic acid, cold, NaCl, and dehydration treatment). Transcripts of BrPGIP1, BrPGIP3, and BrPGIP5 were detected in all tissues tested except the stamen, while BrPGIP2 transcripts were expressed in all tissues tested. Transcripts of BrPGIP4 were not expressed in cabbage. Innoculation with a bacterium that causes soft rot, Pectobacterium carotovorum ssp. carotovorum (Pcc), strongly induced transcripts of BrPGIP2; and expression occurred more rapidly in the resistant compared to the susceptible line. BrPGIP2 showed 50–99% similarity in amino acid sequences to extracellular PGIPs from other plants. In order to assess the role of BrPGIP2 protein in protecting plants from Pcc, we generated a number of transgenic tobacco and Chinese cabbage lines over-expressing BrPGIP2. PGIP from transgenic tobacco plants inhibited Pcc PG activity by 74%, while PGIP from wild-type tobacco plants gave only 43% Pcc PG inhibition. Transgenic Chinese cabbage plants also exhibited improved resistance to bacterial soft rot (up to 54%). PGIP from transgenic Chinese cabbage plants inhibited Pcc PG activity by 77%, while PGIP from wild-type plants showed only 8% Pcc PG inhibition. This is the first report showing the role of BrPGIPs in resistance to bacterial soft rot caused by Pcc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1998) Current protocols in molecular biology. Greene/Wiley, New York

    Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771

    Article  CAS  PubMed  Google Scholar 

  • Cervone F, De Lorenzo G, Pressey R, Darvill AG, Albersheim P (1990) Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants? Phytochemistry 29:447–449

    Article  CAS  Google Scholar 

  • Cho YN, Park SY, Noh TK, Song MJ, Park YS, Min BW (2003) Transformation of Chinese cabbage with L-Gulono-γ-Lactione oxidase (GLOase)-encoding gene using Agrobacterium tumefaciens. Kor J Hort Sci Technol 21:9–13

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 6:735–743

    Article  Google Scholar 

  • Cook BJ, Clay RP, Bergmann CW, Albersheim P, Darvill AG (1999) Fungal polygalacturonases exhibit different substrate degradation patterns and differ in their susceptibilities to polygalacturonase-inhibiting proteins. Mol Plant-Microbe Interact 12:703–711

    Article  CAS  PubMed  Google Scholar 

  • D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G (2004) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol 135:2424–2435

    Article  PubMed  Google Scholar 

  • De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    Article  PubMed  Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPS) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335

    Article  PubMed  Google Scholar 

  • Devoto A, Clark AJ, Nuss L, Cervone F, De Lorenzo G (1997) Developmental and pathogen-induced accumulation of transcripts of polygalacturonase-inhibiting protein in Phaseolus vulgaris L. Planta 202:284–292

    Article  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Favaron F, Castiglioni C, Di Lenna P (1993) Inhibition of some rot fungi polygalacturonases by Allium cepa L. and Allium porrum L. extracts. J Phytopathol 139:201–206

    Article  CAS  Google Scholar 

  • Favaron F, Sella L, D’Ovidio R (2004) Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol Plant Microbe Interact 17:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact 19:931–936

    Article  CAS  PubMed  Google Scholar 

  • Frediani M, Cremonini R, Salvi G, Caprari C, Desiderio A (1993) Cytological localization of the pgip genes in the embryo suspensor cells of Phaseolus vulgaris L. Theor Appl Genet 87:369–373

    Article  CAS  Google Scholar 

  • Gotoh Y, Nalumpang S, Isshiki A, Utsumi T, Gomi K, Yamamoto H, Akimitsu K (2002) A cDNA encoding polygalacturonase-inhibiting protein induced in citrus leaves by polygalacturonase of Alternaria citri. J Gen Plant Pathol 68:57–61

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  CAS  PubMed  Google Scholar 

  • Hegedus DD, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR (2008) Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially-regulated in response to Sclerotinia sclerotiorum infection, wounding and defence hormone treatment. Planta 228:241–253

    Article  CAS  PubMed  Google Scholar 

  • Hinton JC, Sidebotham JM, Gill DR, Salmond GP (1989) Extracellular and periplasmic isoenzymes of pectate lyase from Erwinia carotovora subspecies carotovora belong to different gene families. Mol Microbiol 3:1785–1795

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hofmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang HE, Ger MJ, Chen CY, Yip MK, Chung MC, Feng TY (2006) Plant ferredoxin-like protein (PFLP) exhibits an anti-microbial ability against soft-rot pathogen Erwinia carotovora subsp. carotovora in vitro and in vivo. Plant Sci 171:17–23

    CAS  Google Scholar 

  • Huang L, Liu Y, Yu X, Xiang X, Cao J (2010) A polygalacturnase inhibitory protein gene (BcMF19) expressed during pollen development in Chinese cabbage-pak-choi. Mol Biol Rep. doi10.1007/sl 1033-010-0139-6

  • Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177

    Article  CAS  PubMed  Google Scholar 

  • Johnston DJ, Williamson B, McMillan GP (1994) The interaction in planta of polygalacturonases from Botrytis cinerea with a cell wall-bound polygalacturonase-inhibiting protein (PGIP) in raspberry fruits. J Exp Bot 45:1837–1843

    Article  CAS  Google Scholar 

  • Joubert DA, Slaughter AR, Kemp G, Becker JV, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA (2006) The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 15:687–702

    Article  CAS  PubMed  Google Scholar 

  • Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JA (2007) A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol Plant Microbe Interact 20:392–402

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Courtois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1–4

    Article  CAS  PubMed  Google Scholar 

  • Leckie F, Mattei B, Capodicasa C, Hemmings A, Nuss L (1999) The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed strand/-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J 18:2352–2363

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Kim JK, Jun W, Choi WJ (2001) Development of dihaploid lines resistant to Erwinia carotovora in Chinese cabbage. J Kor Soc Hort Sci 42:682–684

    Google Scholar 

  • Li R, Rimmer R, Yu M, Sharpe AG, Seguin-Swartz G, Lydiate D, Hegedus DD (2003) Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta 217:299–308

    CAS  PubMed  Google Scholar 

  • Machinandiarena MF, Olivieri FP, Daleo GR, Oliva CR (2001) Isolation and characterization of a polygalacturonase-inhibiting protein from potato leaves. Accumulation in response to salicylic acid, wounding and infection. Plant Physiol Biochem 39:129–136

    Article  CAS  Google Scholar 

  • Mehli L, Schaart JG, Kjellsen TD, Tran DH, Salentijn EMJ, Schouten HJ, Iversen TH (2004) A gene encoding a polygalacturonase-inhibiting protein (PGIP) shows developmental regulation and pathogen-induced expression in strawberry. New Phytol 163:99–110

    Article  CAS  Google Scholar 

  • Mur LA, Carver TL, Prats E (2006) NO way to live; the various roles of nitric oxide in plant-pathogen interactions. J Exp Bot 57:489–505

    Article  CAS  PubMed  Google Scholar 

  • Nasuno S, Starr MP (1996) Pectic enzymes of Pseudomonas marginalis. Phytopathology 56:1414–1415

    Google Scholar 

  • Nuss L, Mah A, Clark AJ, Grisvard J, Dron M (1996) Differential accumulation of polygalacturonase-inhibiting protein (PGIP) mRNA in two near-isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 48:83–89

    Article  CAS  Google Scholar 

  • Park SW, Hwang BH, Kim WY, Kim JK (2004) Changes in cell wall carbohydrates composition and Ca distribution of Brassica campestris ssp. pekinesis in relation to Erwinia polygalacturonase production during soft rot development. J Kor Soc Hort Sci 45:223–232

    Google Scholar 

  • Powell AL, van Kan J, ten Have A, Visser J, Greve LC (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13:942–950

    Article  CAS  PubMed  Google Scholar 

  • Pressey R (1996) Polygalacturonase inhibitors in bean pods. Phytochemistry 42:1267–1270

    Article  CAS  PubMed  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278:38921–38925

    Article  CAS  PubMed  Google Scholar 

  • Salvi G, Giarrizzo F, De Lorenzo G, Cervone F (1990) A polygalacturonase-inhibiting protein in the flowers of Phaseolus vulgaris L. J Plant Physiol 136:513–518

    CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Somerville SC, Maclean DJ (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol 132:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Spadoni S, Zabotina O, Di Matteo A, Mikkelsen JD, Cervone F, De Lorenzo G, Mattei B, Bellincampi D (2006) Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol 141:557–564

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(Suppl):s153–s164

    CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Zhang Y, Zhang T, An L, Wang X (2005) Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria. Crit Rev Microbiol 31:79–89

    Article  PubMed  Google Scholar 

  • Yao C, Conway WS, Sams CE (1995) Purification and characterization of a polygalacturonase-inhibiting protein from apple fruit. Phytopathology 85:1373–1377

    Article  CAS  Google Scholar 

  • Yao C, Conway WS, Ren R, Smith D, Ross GS, Sams CE (1999) Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection. Plant Mol Biol 39:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Zink RT, Chatterjee AK (1985) Cloning and expression in Escherichia coli of pectinase genes of Erwinia carotovora subsp. carotovora. Appl Environ Microbiol 49:714–717

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by the ‘GRRC’ Project of Gyeonggi Provincial Government, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shin Je Kim or Jongkee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B.H., Bae, H., Lim, HS. et al. Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. carotovorum . Plant Cell Tiss Organ Cult 103, 293–305 (2010). https://doi.org/10.1007/s11240-010-9779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9779-4

Keywords

Navigation