Skip to main content
Log in

Adventitious shoot induction from cultured internodal explants of Malaxis acuminata D. Don, a valuable terrestrial medicinal orchid

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Malaxis acuminata is a terrestrial orchid that grows in shady areas of semi-evergreen to shrubby forests. It is highly valued for its medicinal properties as dried pseudo-bulbs are important ingredients of several Ayurvedic preparations. In this study, adventitious shoot buds were induced from internodal explants of M. acuminata grown on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyladenine (BA), kinetin (Kn), and thidiazuron (TDZ). Of the three cytokinins used, TDZ at 3 mg l−1 induced the highest frequency (82%) of organogenic explants. However, all responding explants produced only a single adventitious shoot irrespective of the type and concentration of the cytokinin. Adding 0.5 mg l−1 α naphthaleneacetic acid (NAA) to the medium enhanced adventitious shoot formation. In the presence of 3 mg l−1 TDZ and 0.5 mg l−1 NAA, frequency of organogenesis was 96% with a mean number of 6.1 shoots per explant. Prolonged culture or subculture on the same medium did not promote further shoot production. However, transfer of these cultures to MS medium supplemented with 3 mg l−1 TDZ and 0.5 mg l−1 NAA and various concentrations of different polyamines (PAs), including spermine, spermidine, and putrescine, significantly increased mean shoot number per explant. The highest frequency of shoot induction (100%) and mean shoot number per explant (14.6) was observed on MS medium with 3 mg l−1 TDZ, 0.5 mg l−1 NAA, and 0.4 mM spermidine. Regenerated shoots were excised and subcultured on an elongation medium consisting of MS medium with 3 mg l−1 BA. Moreover, the highest frequency of rooting (96%) and mean number of roots per shoot (3.3) was observed on MS medium with 4 mg l−1 indole-3-butyric acid (IBA) and 1.5 mg l−1 activated charcoal (AC). Almost 90% of rooted shoots were successfully acclimatized and established ex vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AC:

Activated charcoal

BA:

6-Benzyladenine

IBA:

Indole-3-butyric acid

Kn:

Kinetin

MS:

Murashige and Skoog

NAA:

α Naphthaleneacetic acid

PAs:

Polyamines

TDZ:

Thidiazuron

References

  • Ashok Kumar HG, Ravishankar BV, Murthy HN (2004) The influence of polyamines on androgenesis of Cucumis sativus L. Eur J Hort Sci 69:201–205

    Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Bertoldi D, Tassoni A, Martinelli L, Bagni N (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    Article  CAS  PubMed  Google Scholar 

  • Biondi S, Diaz T, Iglesias I, Gamberini G, Bagni N (1990) Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol Plant 78:474–483

    Article  Google Scholar 

  • Bulpitt CJ (2005) The uses and misuses of orchids in medicine. QJM: An Int J Medicine 98:625–631

    CAS  Google Scholar 

  • Chang C, Chang WC (1998) Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plant Cell Rep 17:251–255

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2000a) Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Sci 160:87–93

    Article  CAS  PubMed  Google Scholar 

  • Chen JT, Chang WC (2000b) Plant regeneration via embryo and shoot bud formation from flower-stalk explants of Oncidium ‘Sweet Sugar’. Plant Cell Tissue Organ Cult 62:95–100

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2001) Effects of auxins and cytokinins on direct somatic embryogenesis from leaf explants of Oncidium ‘Gower Ramsey’. Plant Growth Regul 34:229–232

    Article  CAS  Google Scholar 

  • Chen Y, Piluek C (1995) Effects of thidiazuron and N6-benzylamino-purine on shoot regeneration of Phalaenopsis. Plant Growth Regul 16:99–101

    Article  CAS  Google Scholar 

  • Chen JT, Chang C, Chang WC (1999) Direct somatic embryogenesis on leaf explants of Oncidium Gower Ramsey and subsequent plant regeneration. Plant Cell Rep 19:143–149

    Article  CAS  Google Scholar 

  • Chen LR, Chen JT, Chang WC (2002a) Multiple shoot formation and plant regeneration from stem explants of Paphiopedilum orchids. In Vitro Cell Dev Biol-Plant 38:595–597

    CAS  Google Scholar 

  • Chen LR, Chen JT, Chang WC (2002b) Efficient production of protocorm like bodies and plant regeneration from flower stalk explanted of the sympodial orchid Epidendrum radicans. In Vitro Cell Dev Biol-Plant 38:441–445

    Article  Google Scholar 

  • Chen Y, Liu X, Liu Y (2005) In vitro plant regeneration from the immature seeds of Cymbidium faberi. Plant Cell Tissue Organ Cult 81:247–251

    Article  Google Scholar 

  • Chen WH, Tang CY, Kao YL (2009) Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell Tissue Organ Cult 98:229–238

    Article  CAS  Google Scholar 

  • Chi GL, Lin WS, Lee JEE, Pua EC (1994) Role of polyamines on de novo shoot morphogenesis from cotyledons of Brassica campestris ssp. pekinensis (Lour.) Olsson in vitro. Plant Cell Rep 13:323–329

    Article  CAS  Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germana MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ Cult 87:145–153

    Article  CAS  Google Scholar 

  • Couee I, Hummel I, Sulmon C, Gouesbet G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tissue Organ Cult 76:1–10

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Elander M, Leander K, Rosenbloom J, Ruusa E (1973) Studies on orchidaceae alkaloids. XXXII. Crepidine, crepidamine and dendrocrepine from Dendrobium crepidatum Lindl. Acta Chem Scand 27:1907–1913

    Article  CAS  PubMed  Google Scholar 

  • Ernst R (1994) Effect of thidiazuron on in vitro propagation of Phalaenopsis and Doritaenopsis (Orchidaceae). Plant Cell Tissue Organ Cult 39:273–275

    Article  CAS  Google Scholar 

  • Feirer RP (1995) The biochemistry of conifer embryo development: amino acids, polyamines, and storage proteins. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer, Dordrecht, pp 317–336

    Google Scholar 

  • Govindarajan R, Singh DP, Rawat AKS (2007) High-performance liquid chromatographic method for the quantification of phenolics in ‘Chyavanprash’ a potent Ayurvedic drug. J Pharm Biomed Anal 43:527–532

    Article  CAS  PubMed  Google Scholar 

  • Grigoriadou K, Miltiadis V, Eleftherios PE (2002) In vitro propagation of the Greek olive cultivar ‘Chondrolia Chalkidikis’. Plant Cell Tissue Organ Cult 71:47–54

    Article  CAS  Google Scholar 

  • Hagege D, Kevers C, Genus J, Gaspar T (1994) Ethylene production and polyamine content of fully habituated sugar beet calli. J Plant Physiol 143:722–725

    CAS  Google Scholar 

  • Heloir MC, Kevers C, Hausman JF, Gaspar T (1996) Change in the concentration of auxins and polyamines during rooting of in vitro propagated walnut shoots. Tree Physiol 16:515–520

    CAS  PubMed  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Kauth PJ, Vendrame WA, Kane ME (2006) In vitro seed culture and seedling development of Calopogon tuberosus. Plant Cell Tissue Organ Cult 85:91–102

    Article  Google Scholar 

  • Ket NV, Hahn EJ, Park SY, Chakrabarty D, Paek KY (2004) Micropropagation of an endangered orchid Anoectochilus formosanus. Biol Plant 48:339–344

    Article  Google Scholar 

  • Kevers C, Gaspar T, Jacques D (2002) The beneficial role of different auxins and polyamines at successive stages of somatic embryo formation and development of Panax ginseng in vitro. Plant Cell Tissue Organ Cult 70:181–188

    Article  CAS  Google Scholar 

  • Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trend Plant Sci 2:124–130

    Article  Google Scholar 

  • Kuznetsov V, Radyukina NL, Shevyakova NI (2006) Polyamines and stress: biological role, metabolism and regulation. Rus J Plant Physiol 53:583–604

    Article  CAS  Google Scholar 

  • Lawler LJ, Slaytor M (1969) The distribution of alkaloids in New South Wales and Queensland Orchidaceae. Phytochem 8:1959–1962

    Article  CAS  Google Scholar 

  • Martin KP, Madassery J (2006) Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants, and protocorm-like bodies. Sci Hort 108:95–99

    Article  CAS  Google Scholar 

  • Martinez LE, Aguero CB, Lopez ME, Glamarini CR (2000) Improvement of in vitro gynogenesis induction in onion (Allium cepa L.) using polyamines. Plant Sci 156:221–226

    Article  CAS  PubMed  Google Scholar 

  • Minocha R, Dale RS, Cathie R, Steele KD, Minocha SC (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol Plant 105:155–164

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N0-(1, 2, 3-thiadiazol-5-yl)-urea (thidiazuron). Phytochem 21:1509–1511

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nayak NR, Rath SP, Patnaik S (1997) In vitro propagation of three epiphytic Cymbidium Aloifolium (L.) SW, Dendrobium aphyllu (Roxb) Fisch and Dendrobium moschatum (Buchham) SW through thidiazuron-induced high frequency shoot proliferation. Sci Hort 71:416–426

    Google Scholar 

  • Nurhayati N, Gondé D, Ober D (2009) Evolution of pyrrolizidine alkaloids in Phalaenopsis orchids and other monocotyledons: identification of deoxyhypusine synthase, homospermidine synthase and related pseudogenes. Phytochem 70:508–516

    Article  CAS  Google Scholar 

  • Okamoto T, Natsume M, Onaka T, Uchmaru F, Shimizu M (1966) The structure of dendramine (6-oxydendrobine) and 6-oxydendroxine. The fourth and fifth alkaloid from Dendrobium nobile. Chem Pharm Bull 14:676–680

    CAS  PubMed  Google Scholar 

  • Pridgeon AM (1996) Orchids—status survey and conservation action plan. IUCN, Cambridge, UK

    Google Scholar 

  • Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690

    Article  CAS  Google Scholar 

  • Rajesh MK, Radha E, Karun A, Parthasarathy VA (2003) Plant regeneration from embryo-derived callus of oil palm—the effect of exogenous polyamines. Plant Cell Tissue Organ Cult 75:41–47

    Article  CAS  Google Scholar 

  • Rajyalakshmi K, Chowdhry CN, Maheshwari N, Maheshwari SC (1995) Anther culture response in some Indian wheat cultivars and the role of polyamines in induction of haploids. Phytomorp 45:139–145

    Google Scholar 

  • Saiprasad GVS, Raghuveer P, Khetarpal S, Chandra R (2004) Effect of various polyamines on production of protocorm-like bodies in orchid—Dendrobium ‘Sonia’. Sci Hort 100:161–168

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Scherer GFE, Segal Floh EI (2007) Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis. Plant Cell Tissue Organ Cult 90:93–101

    Article  CAS  Google Scholar 

  • Seeni S, Latha PG (1992) Foliar regeneration of the endangered Red Vanda, Renanthera imschootiana Rolfe (Orchidaceae). Plant Cell Tissue Organ Cult 29:167–172

    Article  CAS  Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, Scherer GFE, Handro W, Guerra MP, Floh EIS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98

    Article  CAS  Google Scholar 

  • Singh AKR, Tiwari C (2007) Harnessing the economic potential of Orchids in Uttaranchal. ENVIS Bull Hima Ecol 14:1–3

    Google Scholar 

  • Stewart J, Griffiths M (1995) Manual of orchids. Timber Press, Portland, Oregon

    Google Scholar 

  • Thomas TD, Michael A (2007) High-frequency plantlet regeneration and multiple shoot induction from cultured immature seeds of Rhynchostylis retusa Blume., an exquisite orchid. Plant Biotech Rep 1:243–249

    Article  Google Scholar 

  • Thyagi RK, Yusuf A, Jeyaprakash P, Poonam D (2001) Effects of polyamines on in vitro conservation of Vanilla planifolia (Salisb.) Ames. Ind J Plant Genet Res 14:300–302

    Google Scholar 

  • Tiainen T (1992) The role of ethylene and reducing agents on anther culture response of tetraploid potato (Solanum tuberosum L.). Plant Cell Rep 10:604–607

    Article  CAS  Google Scholar 

  • Tokuhara K, Mii M (2001) Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cell Dev Biol Plant 37:457–461

    Article  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Segal Floh EI, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  CAS  PubMed  Google Scholar 

  • Uniyal MR (1975) Astavarga. Sandigdha Vanaushadhi. Dhanwantri Partrika. Sri Jwala Ayurevd Bhawan Aligarh, India

  • Venkatachalam L, Bhagyalakshmi N (2008) Spermine induced morphogenesis and effect of partial immersion system on the shoot cultures of banana. Appl Biochem Biotechnol 151:502–511

    Article  CAS  PubMed  Google Scholar 

  • Yan N, Hu H, Huang J, Xu K, Wang H, Zhou Z (2006) Micropropagation of Cypripedium flavum through multiple shoots of seedlings derived from mature seeds. Plant Cell Tissue Organ Cult 84:113–117

    Article  Google Scholar 

  • Zettler LW (1997) Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana 18:188–194

    Google Scholar 

Download references

Acknowledgments

We thank the Principal, St. Thomas College, Pala, for providing with necessary laboratory facilities. T.D.T. acknowledges the financial assistance from the Indian National Science Academy (INSA) and the Japan Society for the Promotion of Science (JSPS) in the form of bilateral exchange programme (No. IA/JSPS/2009-2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dennis Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheruvathur, M.K., Abraham, J., Mani, B. et al. Adventitious shoot induction from cultured internodal explants of Malaxis acuminata D. Don, a valuable terrestrial medicinal orchid. Plant Cell Tiss Organ Cult 101, 163–170 (2010). https://doi.org/10.1007/s11240-010-9673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9673-0

Keywords

Navigation