Skip to main content
Log in

Constitutive over-expression of two wheat pathogenesis-related genes enhances resistance of tobacco plants to Phytophthora nicotianae

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The potential role in plant defence of the two wheat pathogenesis-related proteins of class 4 Wheatwin1 and Wheatwin2, possessing high in vitro antimicrobial activity against several pathogens, was investigated through over-expression of their encoding genes wPR4a and wPR4b in transgenic tobacco plants. Several independent transformants were obtained, expressing high levels of either transgene when analysed by northern and western blotting. Accumulation of the wPR4b-encoded protein Wheatwin2 in the apoplast of transgenic plants was also demonstrated. When homozygous transgenic lines in the T4 generation were tested for increased tolerance to Phytophthora nicotianae, they were found to be significantly more resistant than both the wild type and their isogenic, non-wPR4 transgenic lines. These results suggest that both Wheatwins might have in vivo antimicrobial activity, confirming earlier indications from in vitro assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshida K, Shinmyo A, Hibi T (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol 14:145–149

    CAS  Google Scholar 

  • Bhargava A, Osusky M, Hancock RE, Forward BS, Kay WW, Misra S (2007) Antiviral indolicidin variant peptides: Evaluation for broad-spectrum disease resistance in transgenic Nicotiana tabacum. Plant Sci 172:515–523

    Article  CAS  Google Scholar 

  • Bednarek SY, Raikhel NV (1992) Intracellular trafficking of secretory proteins. Plant Mol Biol 20:133–150

    Article  PubMed  CAS  Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: Considerations and approaches. Plant Sci 163:673–681

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Lee HI, Kush A, Chua NH, Raikhel NV (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis. Proc Natl Acad Sci U S A 87:7633–7637

    Article  PubMed  CAS  Google Scholar 

  • Butaye K, Cammue B, Delauré S, De Bolle M (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Caporale C, Di Berardino I, Leonardi L, Bertini L, Cascone A, Buonocore V, Caruso C (2004) Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Lett 575:71–76

    Article  PubMed  CAS  Google Scholar 

  • Caruso C, Caporale C, Poerio E, Facchiano A, Buonocore V (1993) The amino acid sequence of a protein from wheat kernel closely related to proteins involved in the mechanism of plant defence. J Protein Chem 12:379–386

    Article  PubMed  CAS  Google Scholar 

  • Caruso C, Caporale C, Chilosi G, Vacca F, Bertini L, Magro P, Poerio E, Buonocore V (1996) Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J Protein Chem 15:35–44

    Article  PubMed  CAS  Google Scholar 

  • Caruso C, Chilosi G, Caporale C, Leonardi L, Bertini L, Magro P, Buonocore V (1999a) Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci 140:87–97

    Article  CAS  Google Scholar 

  • Caruso C, Bertini L, Tucci M, Caporale C, Leonardi L, Saccardo F, Bressan RA, Veronese P, Buonocore V (1999b) Isolation and characterization of wheat cDNA clones encoding PR4 proteins. DNA Seq 10:301–307

    PubMed  CAS  Google Scholar 

  • Caruso C, Nobile M, Leonardi L, Bertini L, Buonocore V, Caporale C (2001a) Isolation and amino acid sequence of two new PR-4 proteins from wheat. J Protein Chem 20:327–335

    Article  PubMed  CAS  Google Scholar 

  • Caruso C, Bertini L, Tucci M, Caporale C, Nobile M, Leonardi L, Buonocore V (2001b) Recombinant wheat antifungal PR4 proteins expressed in Escherichia coli. Protein Expr Purif 23:380–388

    Article  PubMed  CAS  Google Scholar 

  • Christensen AB, Cho BH, Næsby M, Gregersen PL, Brandt J, Madriz-Ordenana K, Collinge DB, Thordal-Christensen H (2002) The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol Plant Pathol 3:135–144

    Article  CAS  Google Scholar 

  • Cornelissen B, Melchers L (1993) Strategies for control of fungal diseases with transgenic plants. Plant Physiol 101:709–712

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Evans IJ, Greenland AJ (1998) Transgenic approaches to disease protection: applications of antifungal proteins. Pestic Sci 54:353–359

    Article  CAS  Google Scholar 

  • Friedrich L, Moyer M, Ward E, Ryals J (1991) Pathogenesis-related protein 4 is structurally homologous to the carboxy-terminal domains of hevein, Win-1 and Win-2. Mol Gen Genet 230:113–119

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Hejgaard J, Jacobsen S, Bjorn SE, Kragh KM (1992) Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett 307:389–392

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SL, Warkentin TD, DeLong CM (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and General Method for Transferring Genes into Plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima Mand Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lan HY, Tian YC, Wang CH, Liu GZ, Zhang LH, Wang LL, Chen ZH (2000) Studies of transgenic tobacco plants expressing β-1,3-glucanase and chitinase genes and their potential for fungal resistance. Yi Chuan Xue Bao 27:70–77

    PubMed  CAS  Google Scholar 

  • Lee YK, Hippe-Sanwald S, Lee SC, Hohenberg H, Hwang BK (2000) In situ localization of PR-1 mRNA and PR-1 protein in compatible and incompatible interactions of pepper stems with Phytophthora capsici. Protoplasma 211:64–75

    Article  CAS  Google Scholar 

  • Li ZC, McClure JW, Hagerman AE (1989) Soluble and bound apoplastic activity for peroxidase, ß-D-glucosidase, malate dehydrogenase and non-specific arylesterase, in barley (Hordeum vulgare L.) and oat (Avena sativa L.) primary leaves. Plant Physiol 90:185–190

    PubMed  CAS  Google Scholar 

  • Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150

    Article  CAS  Google Scholar 

  • Liu D, Rhodes D, Paino D’Urzo M, Xu Y, Narasimhan ML, Hasegawa PM, Bressan RA, Abad L (1996) In vivo and in vitro activity of truncated osmotin that is secreted into the extracellular matrix. Plant Sci 121:123–131

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakamura K, Matsuoka K (1993) Protein targeting to the vacuole in plant cells. Plant Physiol 101:1–5

    Article  PubMed  CAS  Google Scholar 

  • Pelegrini PB, Franco OL (2005) Plant γ-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 37:2239–2253

    Article  PubMed  CAS  Google Scholar 

  • Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, van den Elzen PJM, Melchers LS, Cornelissen BJC (1994) A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol 104:109–118

    Article  PubMed  CAS  Google Scholar 

  • Potter S, Uknes S, Lawton K, Winter AM, Chandler D, Dimaio J, Novitzky R, Ward E, Ryals J (1993) Regulation of a hevein-like gene in Arabidopsis. Mol Plant Microbe Interact 6:680–685

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Micklen S, Coulson AR (1977) DNA sequencing and chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Stanford A, Bevan M, Northcote D (1989) Differential expression within a family of novel wound-induced genes in potato. Mol Gen Genet 215:200–208

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Svendsen I, Hojrup P, Roepstorff P, Ludvigsen S, Poulsen FM (1992) Prymary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry 31:8767–8770

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The current status of Pathogenesis-Related proteins In: Proceedings of the 9th International Congress on Molecular Plant-Microbe Interactions, Amsterdam, The Netherlands, 25–30 July 1999

  • Vellicce GR, Díaz Ricci JC, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5 B in strawberry. Transgenic Res 15:57–68

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant-Microbe Interac 6:261–264

    CAS  Google Scholar 

  • Weide R, Koornneef M, Zabel P (1989) A simple, nondestructive spraying assay for the detection of an active kanamycin resistance gene in transgenic tomato plants. Theor Appl Genet 78:169–172

    Article  Google Scholar 

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJM, Cornelissen BJC (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619–628

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Gonzales RA, Wagner GJ (1997) Gene fusions of signal sequences with a modified beta-glucuronidase gene results in retention of the beta-glucuronidase protein in the secretory pathway/plasma membrane. Plant Physiol 115:915–924

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Xiao Y, Wang X, Pei Y (2007) Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol 73:939–946

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Zeevaart JAD (1999) An efficient Agrobacterium tumefaciens-mediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.). Plant Cell Rep 18:640–645

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Ministero dell’Istruzione, Università e Ricerca Scientifica (MIUR), project MIUR-FIRB (RBNE01KZE7) and by a grant from Consorzio Interuniversitario Biotecnologie (CIB). This is journal paper 101 of the CNR – Institute of Plant Genetics, Portici, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Tucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiocchetti, F., D’Amore, R., De Palma, M. et al. Constitutive over-expression of two wheat pathogenesis-related genes enhances resistance of tobacco plants to Phytophthora nicotianae . Plant Cell Tiss Organ Cult 92, 73–84 (2008). https://doi.org/10.1007/s11240-007-9306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9306-4

Keywords

Navigation