Skip to main content
Log in

Molecular dynamics studies on interfacial interactions between imidazolium-based ionic liquids and carbon nanotubes

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We have investigated the basic mechanism of carbon nanotube (CNT) interactions with various room-temperature ionic liquids (RTILs) using molecular dynamics (MD) simulations. To understand the effects of the cation molecular geometry on the properties of the interface structure in the RTIL systems, we have studied a set of three RTILs with the same [BF4]- (tetrafluoroborate) anion but with different cations, namely, [EMIM]+ (1-ethyl-3-methylimidazolium), [BMIM]+ (1-butyl-3-methylimidazolium), [HMIM]+ (1-hexyl-3-methylimidazolium), and [OMIM]+ (1-octyl-3-methylimidazolium) ions. The simulation results showed that the imidazolium cations exhibit two distinct orientations (perpendicular and parallel to the CNTs surface) at the interface irrespective of the alkyl chain length of the cations. The average number of hydrogen bonds per cations inside the CNT was found to be higher for [OMIM][BF4] (1.01), which suggests that [OMIM]+ imidazolium rings to be concentrated at the center of the CNT, which favors hydrogen bond. The reported results show the diffusion coefficients of ions in confinement are much lower in comparison to the bulk region. The interaction energy between [OMIM][BF4] (-8.75 kcal.mol−1.ion−1) and CNT was found to be higher as compared to other ILs. The cations paralleling the CNT surface are thermodynamically significantly more stable because of the substantial interfacial π-π stacking interactions, as shown by a comparison with the calculated interaction energies between cations and the CNTs. Our simulation results provide a molecular-level understanding of the stabilization and dispersion of CNT bundles in ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Salah LS, Ouslimani N, Bousba D, Huynen I, Danlée Y, Aksas H (2021) Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. J Nanomater 2021:1–31

    Article  Google Scholar 

  2. Nascimento VV, Neves WQ, Alencar RS, Li G, Fu C, Haddon RC, Bekyarova E, Guo J, Alexandre SS, Nunes RW, Souza Filho AG, Fantini C (2021) Origin of the giant enhanced raman scattering by sulfur chains encapsulated inside single-wall carbon nanotubes. ACS Nano 15(5):8574–8582

    Article  CAS  PubMed  Google Scholar 

  3. Ko J, Joo Y (2021) Review of sorted metallic single-walled carbon nanotubes. Adv Mater Interfaces 8(11):2002106

    Article  CAS  Google Scholar 

  4. Wang J, Chen Y, Yu P (2021) The cohesive energy and vibration characteristics of parallel single-walled carbon nanotubes. Molecules 26(24):7470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh SK, Savoy AW (2020) Ionic liquids synthesis and applications: an overview. J Mol Liq 297:112038

    Article  CAS  Google Scholar 

  6. Pamies R, Espejo C, Carrión FJ, Morina A, Neville A, Bermúdez MD (2017) Rheological behavior of multiwalled carbon nanotube-imidazolium tosylate ionic liquid dispersions. J Rheol 61(2):279–289

    Article  CAS  Google Scholar 

  7. Espejo C, Carrión F-J, Martínez D, Bermúdez M-D (2013) Multi-walled carbon nanotube-imidazolium tosylate ionic liquid lubricant. Tribol Lett 50(2):127–136

    Article  CAS  Google Scholar 

  8. Chaban VV, Prezhdo OV (2014) Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid. ACS Nano 8(8):8190–8197

    Article  CAS  PubMed  Google Scholar 

  9. Ohba T, Hata K, Chaban VV (2015) Nanocrystallization of imidazolium ionic liquid in carbon nanotubes. J Phys Chem C 119(51):28424–28429

    Article  CAS  Google Scholar 

  10. Hameed N, Church JS, Salim NV, Hanley TL, Amini A, Fox BL (2013) Dispersing single-walled carbon nanotubes in ionic liquids: a quantitative analysis. RSC Adv 3(43):20034–20039

    Article  CAS  Google Scholar 

  11. Wang X, Huang Y, Li L, Huang L, Chen X, Yang Z (2021) Molecular-level insights into composition-dependent structure, dynamics, and hydrogen bonds of binary ionic liquid mixture from molecular dynamics simulations. Chem Phys 542:111051

    Article  CAS  Google Scholar 

  12. Sappidi P, Bara JE, Turner CH (2021) Molecular-level behavior of imidazolium-based ionic liquid mixtures. Chem Eng Sci 229:116073

    Article  CAS  Google Scholar 

  13. Mohammadi M, Foroutan M (2013) Mixture of ionic liquid and carbon nanotubes: comparative studies of the structural characteristics and dispersion of the aggregated non-bundled and bundled carbon nanotubes. Phys Chem Chem Phys 15(7):2482–2494

    Article  CAS  PubMed  Google Scholar 

  14. Peng K, Wang X, Huang Q, Yang Z, Li Y, Chen X (2019) Molecular-level understanding of structures and dynamics of imidazolium-based ionic liquids around single-walled carbon nanotubes: different effects between alkyl chains of cations and nanotube diameters. J Phys Chem C 123(31):18932–18938

    Article  CAS  Google Scholar 

  15. Wang X, Fu F, Peng K, Huang Q, Li W, Chen X, Yang Z (2020) Understanding of competitive hydrogen bond behavior of imidazolium-based ionic liquid mixture around single-walled carbon nanotubes. J Phys Chem C 124(12):6634–6645

    Article  CAS  Google Scholar 

  16. Huo F, Liu Z (2015) Interfacial layering and orientation ordering of ionic liquid around single-walled carbon nanotube: a molecular dynamics study. Mol Simul 41(4):271–280

    Article  CAS  Google Scholar 

  17. García G, Atilhan M, Aparicio S (2015) Theoretical study of renewable ionic liquids in the pure state and with graphene and carbon nanotubes. J Phys Chem B 119(37):12224–12237

    Article  PubMed  Google Scholar 

  18. Atilhan M, Aparicio S (2018) Theoretical study of low viscous ionic liquids at the graphene interface. J Phys Chem C 122(3):1645–1656

    Article  CAS  Google Scholar 

  19. França JMP, Nieto de Castro CA, Pádua AAH (2017) Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials. Phys Chem Chem Phys 19(26):17075–17087

    Article  PubMed  Google Scholar 

  20. Peng K, Lin J, Yang D, Fu F, Dai Z, Zhou G, Yang Z (2022) Molecular-level insights into interfacial interaction–nanostructure relationships of imidazolium-based ionic liquids around carbon nanotube electrodes. Ind Eng Chem Res 61(37):14051–14065

    Article  CAS  Google Scholar 

  21. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  22. Price MLP, Ostrovsky D, Jorgensen WL (2001) Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J Comput Chem 22(13):1340–1352

    Article  CAS  Google Scholar 

  23. Canongia Lopes JN, Pádua AAH (2004) Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J Phys Chem B 108(43):16893–16898

    Article  Google Scholar 

  24. Canongia Lopes JN, Deschamps J, Pádua AAH (2004) Modeling ionic liquids using a systematic all-atom force field. J Phys Chem B 108(6):2038–2047

    Article  Google Scholar 

  25. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3(4):156–164

    Article  CAS  Google Scholar 

  26. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  27. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  29. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164

    Article  PubMed  Google Scholar 

  30. Fan X-H, Chen Y-P, Su C-S (2016) Density and viscosity measurements for binary mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide. J Chem Eng Data 61(2):920–927

    Article  CAS  Google Scholar 

  31. Song D, Chen J (2014) Densities and viscosities for ionic liquids mixtures containing [eOHmim][BF4], [bmim][BF4] and [bpy][BF4]. J Chem Thermodyn 77:137–143

    Article  CAS  Google Scholar 

  32. Ning H, Hou M, Mei Q, Liu Y, Yang D, Han B (2012) The physicochemical properties of some imidazolium-based ionic liquids and their binary mixtures. Sci China Chem 55(8):1509–1518

    Article  CAS  Google Scholar 

  33. Brela MZ, Kubisiak P, Eilmes A (2018) Understanding the structure of the hydrogen bond network and its influence on vibrational spectra in a prototypical aprotic ionic liquid. J Phys Chem B 122(41):9527–9537

    Article  CAS  PubMed  Google Scholar 

  34. Mananghaya MR, Santos GN, Yu D (2019) Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: a density functional based tight binding molecular dynamics study. J Comput Chem 40(8):952–958

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Wang Q, Wu T, Zhang L (2005) Fluid structure and transport properties of water inside carbon nanotubes. J Chem Phys 123(23)

  36. Sahu P, Ali SM, Shenoy K, Mohan S (2019) Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations. Phys Chem Chem Phys 21(16):8529–8542

    Article  CAS  PubMed  Google Scholar 

  37. Harris KR, Kanakubo M (2016) Revised and extended values for self-diffusion coefficients of 1-Alkyl-3-methylimidazolium tetrafluoroborates and hexafluorophosphates: relations between the transport properties. J Phys Chem B 120(50):12937–12949

    Article  CAS  PubMed  Google Scholar 

  38. Bagno A, D’Amico F, Saielli G (2007) Computer simulation of diffusion coefficients of the room-temperature ionic liquid [bmim][BF4]: problems with classical simulation techniques. J Mol Liq 131:17–23

    Article  Google Scholar 

  39. Zhang X, Wang D, Song X, Li Y, Leng X, Wei Y, Liu G, Xia Q (2023) Insight into the stabilization mechanism of imidazole-based ionic liquids at the interface of the carbon nanotubes: a computational study. J Mol Liq 375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vellore Institute of Technology is gratefully acknowledged for providing high-performance computing technology for this work.

Author information

Authors and Affiliations

Authors

Contributions

Rima Biswas conceived and designed the study. Prateek Banerjee and Rima Biswas performed simulation calculations. Rima Biswas and Kavathekar Soham Sudesh wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rima Biswas.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Banerjee, P. & Sudesh, K.S. Molecular dynamics studies on interfacial interactions between imidazolium-based ionic liquids and carbon nanotubes. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02323-3

Keywords

Navigation