Skip to main content
Log in

Computer Simulation Study on Adsorption and Conformation of Polymer Chains Driven by External Force

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, Monte Carlo simulations are used to study the critical adsorption behaviors of flexible polymer chains under the action of an external driving force F parallel to an attractive flat surface. The critical adsorption temperature Tc decreases linearly with increasing F, indicating that the driving force suppresses the adsorption of polymer. The conformation of polymer is also affected by the driving force. However, the effect of F is dependent on the competition between the driving force and temperature. Under strong force or at low temperature, the polymer is stretched along the direction of the force, while under weak force or at high temperature, the polymer is not stretched. When the force is comparable to the temperature, the polymer may be stretched perpendicular to the driving force, and below Tc, we observe conformational transitions from parallel to perpendicular and again to parallel by decreasing the temperature. We found that the perpendicular stretched conformation leads the polymer chain to synchronously move along the direction of the driving force. Moreover, the conformational transitions are attributed to the competition and cooperation between the driving force and the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, P.; Ziolek, R. M.; Gazzarrini, E.; Owen, D. M.; Lorenz, C. D. On the interaction of hyaluronic acid with synovial fluid lipid membranes. Phys. Chem. Chem. Phys. 2019, 21, 9845–9857.

    CAS  PubMed  Google Scholar 

  2. Yan, W.; Ramakrishna, S. N.; Romio, M.; Benetti, E. M. Bioinert and lubricious surfaces by macromolecular design. Langmuir 2019, 35, 13521–13535.

    CAS  PubMed  Google Scholar 

  3. Morales, M. A.; Paiva, W. A.; Marvin, L.; Balog, E. R. M.; Halpern, J. M. Electrochemical characterization of the stimuli-response of surface-immobilized elastin-like polymers. Soft Matter 2019, 15, 9640–9646.

    CAS  PubMed  Google Scholar 

  4. Xia, Y. Q.; Tian, W. D.; Chen, K.; Ma, Y. Q. Globule-stretch transition of a self-attracting chain in the repulsive active particle bath. Phys. Chem. Chem. Phys. 2019, 21, 4487–4493.

    CAS  PubMed  Google Scholar 

  5. Rao, A. N.; Grainger, D. W. Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomater. Sci. 2014, 2, 436–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, D. E.; Babcock, H. P.; Chu, S. Single-polymer dynamics in steady shear flow. Science 1999, 283, 1724–1727.

    CAS  PubMed  Google Scholar 

  7. Chen, W.; Li, Y.; Zhao, H.; Liu, L.; Chen, J.; An, L. Conformations and dynamics of single flexible ring polymers in simple shear flow. Polymer 2015, 64, 93–99.

    CAS  Google Scholar 

  8. He, G. L.; Messina, R.; Löwen, H.; Kiriy, A.; Bocharova, V.; Stamm, M. Shear-induced stretching of adsorbed polymer chains. Soft Matter 2009, 5, 3014–3017.

    CAS  Google Scholar 

  9. He, G. L.; Messina, R.; Lowen, H. Statistics of polymer adsorption under shear flow. J. Chem. Phys. 2010, 132, 124903.

    PubMed  Google Scholar 

  10. Li, H.; Qian, C. J.; Luo, M. B. Critical adsorption of copolymer tethered on selective surfaces. J. Chem. Phys. 2016, 144, 164901.

    PubMed  Google Scholar 

  11. Li, H.; Qian, C. J.; Sun, L. Z.; Luo, M. B. Conformational properties of a polymer tethered to an interacting flat surface. Polym. J. 2010, 42, 383–385.

    CAS  Google Scholar 

  12. Baig, C.; Mavrantzas, V. G.; Kröger, M. Flow effects on melt structure and entanglement network of linear polymers: results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear. Macromolecules 2010, 43, 6886–6902.

    CAS  Google Scholar 

  13. O’Connor, T. C.; Alvarez, N. J.; Robbins, M. O. Relating chain conformations to extensional stress in entangled polymer melts. Phys. Rev. Lett. 2018, 121, 047801.

    PubMed  Google Scholar 

  14. Lu, Y.; An, L.; Wang, S. Q.; Wang, Z. G. Evolution of chain conformation and entanglements during startup shear. ACS Macro Lett. 2013, 2, 561–565.

    CAS  Google Scholar 

  15. De Gennes, P. G. Scaling theory of polymer adsorption. J. Phys. 1976, 37, 1445–1452.

    CAS  Google Scholar 

  16. Migliorini, E.; Weidenhaupt, M.; Picart, C. Practical guide to characterize biomolecule adsorption on solid surfaces. Biointerphases 2018, 13, 06D303.

    Google Scholar 

  17. Li, H.; Qian, C. J.; Huang, J. H.; Luo, M. B. Critical adsorption of an end-grafted diblock copolymer on a flat surface. Polym. J. 2015, 47, 53–58.

    Google Scholar 

  18. Yang, X.; Yang, Q. H.; Fu, Y.; Wu, F.; Huang, J. H.; Luo, M. B. Study on the adsorption process of a semi-flexible polymer onto homogeneous attractive surfaces. Polymer 2019, 172, 83–90.

    CAS  Google Scholar 

  19. Li, H.; Gong, B.; Qian, C. J.; Luo, M. B. Critical adsorption of a flexible polymer on a stripe-patterned surface. Soft Matter 2015, 11, 3222–3231.

    CAS  PubMed  Google Scholar 

  20. Sun, L. W.; Li, H.; Zhang, X. Q.; Gao, H. B.; Luo, M. B. Identifying conformation states of polymer through unsupervised machine learning. Chinese J. Polym. Sci. 2020.

    Google Scholar 

  21. Maroni, P.; Montes Ruiz-Cabello, F. J.; Cardoso, C.; Tiraferri, A. Adsorbed mass of polymers on self-assembled monolayers: effect of surface chemistry and polymer charge. Langmuir 2015, 31, 6045–6054.

    CAS  PubMed  Google Scholar 

  22. Luo, R.; Jiang, H.; Du, B.; Zhou, S.; Zhu, Y. Preparation and application of solid polymer electrolyte based on deep eutectic solvent. AIP Adv. 2019, 9, 035341.

    Google Scholar 

  23. Skvortsov, A. M.; Gorbunov, A. A.; Klushin, L. I. Adsorption-stretching analogy for a polymer chain on a plane. Symmetry property of the phase diagram. J. Chem. Phys. 1994, 100, 2325.

    CAS  Google Scholar 

  24. van Rensburg, E. J. J.; Whittington, S. G. Adsorbed self-avoiding walks subject to a force. J. Phys. A: Mathemat. Theor. 2013, 46, 435003.

    Google Scholar 

  25. Iliev, G. K.; Whittington, S. G. Adsorbed polymers on an inhomogeneous surface: pulling at an angle. J. Phys. A: Mathemat. Theor. 2012, 45, 185003.

    Google Scholar 

  26. Skvortsov, A. M.; Klushin, L. I.; Fleer, G. J.; Leermakers, F. A. Analytical theory of finite-size effects in mechanical desorption of a polymer chain. J. Chem. Phys. 2010, 132, 064110.

    CAS  PubMed  Google Scholar 

  27. Orlandini, E.; Whittington, S. G. Adsorbing polymers subject to an elongational force: the effect of pulling direction. J. Phys. A: Mathemat. Theor. 2010, 43, 485005.

    Google Scholar 

  28. Serr, A.; Netz, R. R. Enhancing polymer adsorption by lateral pulling. Europhys. Lett. 2007, 78, 68006.

    Google Scholar 

  29. Dutta, S.; Dorfman, K. D.; Kumar, S. Adsorption of single polymer molecules in shear flow near a planar wall. J. Chem. Phys. 2013, 138, 034905.

    PubMed  Google Scholar 

  30. Ibanez-Garcia, G. O.; Goldstein, P.; Hanna, S. Brownian dynamics simulations of confined tethered polymers in shear flow: the effect of attractive surfaces. Eur. Phys. J. E 2013, 36, 56.

    PubMed  Google Scholar 

  31. Li, J.; Nie, Y. J.; Ma, Y.; Hu, W. B. Stress-induced polymer deformation in shear flows. Chinese J. Polym. Sci. 2013, 31, 1590–1598.

    CAS  Google Scholar 

  32. Li, G.; Ardekani, A. M. Collective motion of microorganisms in a viscoelastic fluid. Phys. Rev. Lett. 2016, 117, 118001.

    PubMed  Google Scholar 

  33. Kong, X.; Han, Y.; Chen, W.; Cui, F.; Li, Y. Understanding conformational and dynamical evolution of semiflexible polymers in shear flow. Soft Matter 2019, 15, 6353–6361.

    CAS  PubMed  Google Scholar 

  34. Jiang, Y.; Chen, J. Z. Y. The applications of the wormlike chain model on polymer physics. Acta Phys. Sin. 2016, 65, 17820.

    Google Scholar 

  35. Li, Y.; Huang, Q.; Shi, T.; An, L. Effects of chain flexibility on polymer conformation in dilute solution studied by lattice Monte Carlo simulation. J. Phys. Chem. B 2006, 110, 3502–23506.

    Google Scholar 

  36. Shaffer, J. S. Effects of chain topology on polymer dynamics: bulk melts. J. Chem. Phys. 1994, 101, 4205–4213.

    CAS  Google Scholar 

  37. Li, H.; Qian, C. J.; Wang, C.; Luo, M. B. Critical adsorption of a flexible polymer confined between two parallel interacting surfaces. Phys. Rev. E 2013, 87, 012602.

    Google Scholar 

  38. Rosenbluth, M. N.; Rosenbluth, A. W. Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 1955, 23, 356–359.

    CAS  Google Scholar 

  39. Li, H.; Gong, B.; Qian, C. J.; Li, C. Y.; Huang, J. H.; Luo, M. B. Simulation of conformational properties of end-grafted diblock copolymers. RSC Adv. 2014, 4, 27393–27398.

    CAS  Google Scholar 

  40. Li, J.; Ma, Y.; Hu, W. Dynamic Monte Carlo simulation of non-equilibrium Brownian diffusion of single-chain macromolecules. Molecul. Simul. 2015, 42, 321–327.

    CAS  Google Scholar 

  41. Li, H.; Qian, C. J.; Luo, M. B. Simulation of a flexible polymer tethered to a flat adsorbing surface. J. Appl. Polym. Sci. 2012, 124, 282–287.

    CAS  Google Scholar 

  42. Luo, M. B. The critical adsorption point of self-avoiding walks: a finite-size scaling approach. J. Chem. Phys. 2008, 128, 044912.

    PubMed  Google Scholar 

  43. Eisenriegler, E.; Kremer, K.; Binder, K. Adsorption of polymer chains at surfaces: scaling and Monte Carlo analyses. J. Chem. Phys. 1982, 77, 6296–6320.

    CAS  Google Scholar 

  44. Sumithra, K. The influence of adsorbate-surface interaction energy on adsorption and recognition of diblock copolymers on patterned surfaces. J. Chem. Phys. 2009, 130, 194903.

    CAS  PubMed  Google Scholar 

  45. Zhang, X.; Fan, M.; Wang, D.; Zhou P.; Tao, D. Top-k feature selection framework using robust 0–1 integer programming. IEEE Trans. Neural Netw. Learn. Syst. 2020, DOI: https://doi.org/10.1109/TNNLS.2020.3009209.

  46. Zhang, X.; Wang, T; Wang, J; Tang, G.; Zhao, L. Pyramid channel-based feature attention network for image dehazing. Comput. Vis. Image Und. 2020, 197–198, 103003.

    Google Scholar 

  47. Zhang, X; Jiang, R.; Wang, T.; Huang, P.; Zhao, L. Attention-based interpolation network for video deblurring. Neurocomputing 2020, DOI: https://doi.org/10.1016/j.neucom.2020.04.147.

  48. Zhang, X.; Wang, D.; Zhou, Z.; Ma, Y. Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal. Mach. Intell. 2020, DOI: https://doi.org/10.1109/TPAMI.2019.2929043.

  49. Zhang, X.; Hu, W.; Xie, N.; Bao, H.; Maybank, S. A robust tracking system for low frame rate video. Int. J. Comput. Vis. 2015, 115, 279–304.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research Fund of Zhejiang Provincial Education Department (No. Y201738867) and the National Natural Science Foundation of China (Nos. 11775161, 11875205, and 11974305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Li, Xiao-Qin Zhang or Meng-Bo Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, HB., Li, H., Zhang, XQ. et al. Computer Simulation Study on Adsorption and Conformation of Polymer Chains Driven by External Force. Chin J Polym Sci 39, 258–266 (2021). https://doi.org/10.1007/s10118-020-2491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2491-x

Keywords

Navigation