Skip to main content
Log in

Theoretical investigation on the effect of additional hydrogen bonded network on the ground state double proton transfer of 2-aminopyrazine-H2O compound

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The ground state double proton transfer (GSDPT) process of 2-aminopyrazine (APz) complex bonded with one bridged water molecule was investigated in detail at the M06-2X/6-31G(d, p) level. The extra hydrogen bonded (H-bonded) network formed between APz and 1 ~ 3 extra water molecules was drawn into APz-H2O complex to form APz-(H2O)n+m (n = 1, m = 1–3) complexes, and its effects on GSDPT process in APz-H2O were explored systematically. Based on the analyses of structural parameters and correlation plots, we found that the GSDPT reaction occurred in a concerted but asynchronous protolysis or solvolysis pattern depending on the location and number of the extra water molecules. The energy barrier of GSDPT process was also affected by the location and number of the extra water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data can be obtained from the corresponding authors through email.

Code availability

Not applicable.

References

  1. Eigen M, Kruse W, Maass G, De Maeyer L (1964) Rate constants of protolytic reactions in aqueous solution. Prog React Kinet 2:287–318

    Google Scholar 

  2. Huynh MHV, Meyer TJ (2007) Proton-coupled electron transfer. Chem Rev 107:5004–5064

    Article  PubMed  CAS  Google Scholar 

  3. (a) Caldin EF, Gold V (1975) Proton-transfer reactions. Chapman and Hall, London. (b) Müller A, Ratajczak H, Junge W, Diemann E (eds) (1992) Electron and proton transfer in chemistry and biology. Elsevier, Amsterdam

  4. Mohammed OF, Pines D, Nibbering ETJ, Pines E (2007) Base-induced solvent switches in acid-base reactions. Angew Chem Int Ed 46:1458–1461

    Article  CAS  Google Scholar 

  5. Lill MA, Helms V (2002) Proton shuttle in green fluorescent protein studied by dynamic simulations. Proc Natl Acad Sci USA 99:2778–2781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mathias G, Marx D (2007) Structures and spectral signatures of protonated water networks in bacteriorhodopsin. Proc Natl Acad Sci USA 104:6980–6985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Faxén K, Gilderson G, Ädelroth P, Brzezinski P (2005) A mechanistic principle for proton pumping by cytochrome c oxidase. Nature 437:286–289

    Article  PubMed  Google Scholar 

  8. Hay S, Pudney CR, McGrory TA, Pang J, Sutcliffe MJ, Scrutton NS (2009) Barrier compression enhances an enzymatic hydrogen-transfer reaction. Angew Chem Int Ed 48:1452–1454

    Article  CAS  Google Scholar 

  9. Lathem AP, Rinne BL, Maldonado MA, Heiden ZM (2017) Comparison of intramolecular and intermolecular ammonium and phosphonium borohydrides in hydrogen-, proton-, and hydride-transfer reactions. Eur J Inorg Chem 13:2032–2039

    Article  Google Scholar 

  10. Rinne BL, Lathem AP, Heiden ZM (2017) Influence of intramolecular vs. intermolecular phosphonium-borohydrides in catalytic hydrogen, hydride, and proton transfer reactions. Dalton Trans 46:9382–9393

    Article  PubMed  CAS  Google Scholar 

  11. Sanz M, Organero JA, Douhal A (2007) Proton and charge transfer reactions dynamics of a hydroxyflavone derivative in a polar solvent and in a cyclodextrin nanocavity. Chem Phys 338:135–142

    Article  CAS  Google Scholar 

  12. Singla N, Kumar R, Pathak A, Chowdhury P (2013) Excited state behavior of Pyrrole 2-carboxyldehyde: theoretical and experimental study. Spectrochim Acta Part A 112:125–131

    Article  CAS  Google Scholar 

  13. Bountis T (1992) Proton transfer in hydrogen-bonded systems. Plenum, New York. pp. 1–15

  14. Baek SJ, Choi KW, Choi YS, Kim SK (2002) Resonant-enhanced two photon ionization and mass-analyzed threshold ionization spectroscopy of jet-cooled 2-aminopyridines. J Chem Phys 117:2131–2140

    Article  CAS  Google Scholar 

  15. Lin JL, Wu RH, Tzeng WB (2002) Mass analyzed threshold ionization spectroscopy of 2-aminopyridine cation. Chem Phys Lett 353:55–62

    Article  CAS  Google Scholar 

  16. Lin JL, Wu RH, Tzeng WB (2002) Mass analyzed threshold ionization spectroscopy of 3-aminopyridine cation and vicinal substitution effect. Chem Phys 280:191–203

    Article  CAS  Google Scholar 

  17. Wu RH, Nachtigally P, Brutschy B (2004) Structure and hydrogen bonding of 2-aminopyridine. (H2O)(n) (n=1, 2) studied by infrared ion depletion spectroscopy. Phys Chem Chem Phys 6:515–521

    Article  CAS  Google Scholar 

  18. Yamada Y, Ohba H, Noboru Y, Daicho S, Nibu Y (2012) Solvation effect on the NH stretching vibrations of solvated aminopyrazine, 2-aminopyridine, and 3-aminopyridine clusters. J Phys Chem A 116:9271–9278

    Article  PubMed  CAS  Google Scholar 

  19. Chai S, Yu J, Han YC, Cong SL (2013) Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: Time-dependent density functional theory study. Spectrochim Acta Part A 115:39–44

    Article  CAS  Google Scholar 

  20. Yamada Y, Goto Y, Fukuda Y, Ohba H, Nibu Y (2020) Excited-state dynamics affected by switching of a hydrogen-bond network in hydrated aminopyrazine clusters. J Phys Chem A 124:9963–9972

    Article  PubMed  CAS  Google Scholar 

  21. Ni M, Fang H (2019) Theoretical study on kinetics of ammonia-catalyzed ground-state tautomerization in 2-pyridone: effect of chemical modification. Chem Pap 73:1561–1569

    Article  CAS  Google Scholar 

  22. Yi JC, Fang H (2020) Effect of water on excited-state double proton transfer in 7-azaindole-H2O complex: A theoretical study. J Phys Org Chem 33

  23. Sun GT, Fang H (2022) Extra hydrogen-bonding and water chain altering water-mediated ground-state multiple proton transfer in 2-aminopyridine: a theoretical study. Struc Chem 33:335–349

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  25. Frisch MJ, Truck GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  26. Brown ID (1992) Chemical and steric constraints in inorganic solids. Acta Cryst B 48:553–572

    Article  Google Scholar 

  27. Park SY, Jang DJ (2010) Accumulated proton-donating ability of solvent molecules in proton transfer. J Am Chem Soc 132:297–302

    Article  PubMed  CAS  Google Scholar 

  28. Limbach HH, Pietrzak M, Benedict H, Tolstoy PM, Golubev NS, Denisov GS (2004) Empirical corrections for anharmonic zero-point vibrations of hydrogen and deuterium in geometric hydrogen bond correlations. J Mol Struct 706:115–119

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, writing-original draft preparation, visualization and investigation were performed by Jing Zhang. Conceptualization, methodology, software, supervision, validation, writing-reviewing and editing were performed by Hua Fang. All authors approved the final manuscript.

Corresponding author

Correspondence to Hua Fang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Fang, H. Theoretical investigation on the effect of additional hydrogen bonded network on the ground state double proton transfer of 2-aminopyrazine-H2O compound. Struct Chem (2024). https://doi.org/10.1007/s11224-023-02269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02269-y

Keywords

Navigation