Skip to main content

Advertisement

Log in

Molecular docking, expounding the regiospecificity, stereoselectivity, and the mechanism of [5+2] cycloaddition reaction between ethereal ether and oxidopyrylium

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Application of molecular electron density theory (MEDT) to investigate the [5+2] cycloaddition reaction between oxidopyrylium and ethervinylether, we discovered that oxidopyrylium is an electrophile and ethervinylether is a nucleophile by an examination of conceptual DFT indices. Analysis of energetical parameters shows clearly that this cycloaddition is both regio- and stereoselective, which is extremely consistent with the experience. Topological analysis of the electron localization function (ELF) has shown that this [5+2] cycloaddition is achieved by a two-step, single-step mechanism along the most favored route. Aside from that, docking outcomes show that the (120) oxabicyclo[3.2.1]octene derivatives have a significant anti-HIV potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material.

References

  1. Schiavone D V, Kapkayeva DM, Murelli RP (2021) Investigations into a stoichiometrically equivalent intermolecular oxidopyrylium [5+2] cycloaddition reaction leveraging 3-hydroxy-4-pyrone-based oxidopyrylium dimers. J Org Chem 86(5). https://doi.org/10.1021/acs.joc.0c02655

  2. Jasiński R (2021) On the question of stepwise [4+2] cycloaddition reactions and their stereochemical aspects. Symmetry (Basel) 13(10). https://doi.org/10.3390/sym13101911

  3. Aitouna AO, Barhoumi A, Zeroual A (2023) A mechanism study and an investigation of the reason for the stereoselectivity in the [4+2] cycloaddition reaction between cyclopentadiene and gem-substituted ethylene electrophiles. Sci Radices 2(3):217–228. https://doi.org/10.58332/scirad2023v2i3a01

  4. El Ghozlani M, Barhoumi A, Elkacmi R, Ouled Aitouna A, Zeroual A, El idrissi M (2020) Mechanistic study of hetero-Diels-Alder [4+2] cycloaddition reactions between 2-nitro-1H-pyrrole and isoprene. Chemistry Africa 3:901–909. https://doi.org/10.1007/s42250-020-00187-8

    Article  CAS  Google Scholar 

  5. Zahnoune R, Asserne F, Ourhriss N, Ouled Aitouna A, Barhoumi A, Hakmaoui Y, Belghiti ME, Abouricha S, El ajlaoui R, Zeroual A (2022) Theoretical survey of Diels-Alder between acrylic acid and isoprene catalyzed by the titanium tetrachloride and titanium tertafluoride. J Mol Struct 1269:133630. https://doi.org/10.1016/j.molstruc.2022.133630

    Article  CAS  Google Scholar 

  6. Aitouna AO, Belghiti ME, Eşme A, Anouar E, Aitouna AO, Zeroual A, Salah M, Chekroun A, El Abdallaoui HE, Benharref A, Mazoir N (2021) Chemical reactivities and molecular docking studies of parthenolide with the main protease of HEP-G2 and SARS-CoV-2. J Mol Struct 130705. https://doi.org/10.1016/j.molstruc.2021.130705

  7. Ouled Aitouna Ab, Barhoumi A, El idrissi M, Ouled Aitouna A, Zeroual A, Mazoir N, Chakroun A, Benharref A (2021) Theoretical investigation of the mechanism, chemo- and stereospecifity in the epoxidation reaction of limonene with meta-chloroperoxybenzoic acid (m-CPBA). Mor J Chem 9(1):75–82. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i1.20462

  8. Zeroual A, Ríos-Gutiérrez M, Amiri O, El idrissi M, Domingo LR (2019) An MEDT study of the mechanism, chemo- and stereoselectivity of the epoxidation reaction of R-carvone with peracetic acid. RSC Advances - Royal Society of Chemistry 9:28500–28509. https://doi.org/10.1039/c9ra05309c

    Article  CAS  Google Scholar 

  9. Raji H, Aitouna AO, Barhoumi A, Chekroun A, Zeroual A, Syed A, Elgorban AM, Verma M, Benharref A, Varma RS (2023) Antiviral docking analysis, semisynthesis and mechanistic studies on the origin of stereo- and chemoselectivity in epoxidation reaction of α′-trans-himachalene. J Mol Liquid 385:122204. https://doi.org/10.1016/j.molliq.2023.122204

  10. Breugst M, Reissig HU (2020) The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition. Angew Chemie Int Ed 59(30). https://doi.org/10.1002/anie.202003115

  11. Ouahdi Z, Ourhriss N, El idrissi M et al (2022) Exploration of the mechanism, chemospecificity, regiospecificity and stereoselectivity of the cycloaddition reaction between 9α-hydroxyparthenolide and nitrilimine: MEDT study. Theor Chem Acc 141:50. https://doi.org/10.1007/s00214-022-02913-6

    Article  CAS  Google Scholar 

  12. El idrissi M, El ghozlani M, Eşme A, Ríos-Gutiérrez M, Ouled Aitouna A, Salah M, El Alaoui El Abdallaoui H, Zeroual A, Mazoir N, Domingo LR (2021) Mpro-SARS-CoV-2 inhibitors and various chemical reactivity of 1-bromo- and 1-chloro-4-vinylbenzene in [3+2] cycloaddition reactions. Organics 2:1–16. https://doi.org/10.3390/org2010001

    Article  CAS  Google Scholar 

  13. Zeroual A, Ríos-Gutiérrez M, El Ghozlani M, El idrissi M, Ouled Aitouna A, Salah M, El Alaoui El Abdallaoui H, Domingo LR (2020) A molecular electron density theory investigation of the molecular mechanism, regioselectivity, stereoselectivity and chemoselectivity of cycloaddition reaction between acetonitrile N-oxide and 2,5-dimethyl-2H-[1,2,3]diazarsole. Theoret Chem Acc 139:37. https://doi.org/10.1007/s12039-019-1656-z

    Article  CAS  Google Scholar 

  14. Siadati SA (2016) A theoretical study on stepwise- and concertedness of the mechanism of 1, 3-dipolar cycloaddition reaction between tetra amino ethylene and trifluoro methyl azide. Comb Chem High Throughput Screening 19(2):170–175

    Article  CAS  Google Scholar 

  15. Siadati SA (2016) Beyond the alternatives that switch the mechanism of the 1, 3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog React Kinet Mech 41(4):331–344. https://doi.org/10.3184/146867816X14719552202168

    Article  CAS  Google Scholar 

  16. Zeroual A, Ríos-Gutiérrez M, Salah M, Abdallaoui EAE, H, Domingo LR (2019) An investigation of the molecular mechanism, chemioselectivity and regioselectivity of cycloaddition reaction between acetonitrile N-oxide and 2,5-dimethyl-2H-[1,2,3]diazaphosphole: a MEDT study. J Chem Sci 131:75

    Article  Google Scholar 

  17. Al-Rasheed HH, Al-Majid AM, Ali M et al (2022) [3+2] cycloadditions in asymmetric synthesis of spirooxindole hybrids linked to triazole and ferrocene units: X-ray crystal structure and MEDT study of the reaction mechanism. Symmetry (Basel) 14(10). https://doi.org/10.3390/sym14102071

  18. Żmigrodzka M, Sadowski M, Kras J, Desler E, Demchuk OM, Kula K (2022) Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci Radices 01(01). https://doi.org/10.58332/v22i1a02

  19. El idrissi M, Eşme A, Hakmaoui Y, Ríos-Gutiérrez M, Ouled Aitouna A, Salah M (2021) A. Zeroual, L. R. Domingo, Divulging the various chemical reactivity of trifluoromethyl-4-vinyl-benzene as well as methyl-4-vinyl-benzene in [3+2] cycloaddition reactions. J Mol Graph Model 102:107760. https://doi.org/10.1016/j.jmgm.2020.107760

  20. Mohammad-Salim Haydar A, Ahmed Basheer H, Abdallah HH, Zeroual A, Abdi Jamila L (2021) A molecular electron density theory study for [3+2] cycloaddition reactions of N-benzylcyclohexylnitrone with methyl-3-butenoate. New J Chem 45:262–267. https://doi.org/10.1039/D0NJ04049E

    Article  Google Scholar 

  21. Domingo LR, Ríos-Gutiérrez M (2023) A useful classification of organic reactions based on the flux of the electron density. Sci Radices 2:1–24. https://doi.org/10.58332/scirad2023v2i1a01

    Article  Google Scholar 

  22. Zawadzińska K, Gostyński B (2023) Nitrosubstituted analogs of isoxazolines and isoxazolidines: a surprising estimation of their biological activity via molecular docking. Sci Radices 2:25–46. https://doi.org/10.58332/scirad2023v2i1a02

    Article  Google Scholar 

  23. Salah M, Zeroual A, Jorio S, El Hadki H, Kabbaj O, Marakchi K, Komiha N (2020) Theoretical study of the 1,3-DC reaction between fluorinated alkynes and azides: reactivity indices, transition structures, IGM and ELF analysis. J Mol Graph Model 94:107458. https://doi.org/10.1016/j.jmgm.2019.107458

    Article  CAS  PubMed  Google Scholar 

  24. Salah M, Belghiti ME, Aitouna AO, Zeroual A, Jorio S, El Alaoui AH, El Hadki H, Marakchi K, Komiha N (2021) MEDT study of the 1,3-DC reaction of diazomethane with psilostachyin and investigation about the interactions of some pyrazoline derivatives with protease (Mpro) of nCoV-2. J Mol Graph Model 102:107763. https://doi.org/10.1016/j.jmgm.2020.107763

    Article  CAS  PubMed  Google Scholar 

  25. Zeroual A, Ríos-Gutiérrez M, El idrissi M, El Alaoui El Abdallaoui H, Domingo Luis R (2019) An MEDT study of the mechanism and selectivities of the [3+2] cycloaddition reaction of tomentosin with benzonitrile oxide. Int J Quantum Chem 1–9. https://doi.org/10.1002/qua.25980

  26. Xiao WL, Yang LM, Gong NB et al (2006) Rubriflordilactones A and B, two novel bisnortriterpenoids from Schisandra rubriflora and their biological activities. Org Lett 8(5). https://doi.org/10.1021/ol060062f

  27. Kim E La, Li JL, Hong J et al (2016) An unusual 1(10 → 19)abeo steroid from a jellyfish-derived fungus. Tetrahedron Lett 57(25). https://doi.org/10.1016/j.tetlet.2016.05.050

  28. Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M (2006) Cortistatins A, B, C, D anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J Am Chem Soc 128(10). https://doi.org/10.1021/ja057404h

  29. Nguyen TV, Hartmann JM, Enders D (2013) Recent synthetic strategies to access seven-membered carbocycles in natural product synthesis. Synthesis 45(7). https://doi.org/10.1055/s-0032-1318152

  30. Battiste MA, Pelphrey PM, Wright DL (2006) The cycloaddition strategy for the synthesis of natural products containing carbocyclic seven-membered rings. Chem A Eur J 12(13). https://doi.org/10.1002/chem.200501083

  31. Pellissier H (2018) Recent developments in the [5+2] cycloaddition. Adv Synth Catal 360(8). https://doi.org/10.1002/adsc.201701379

  32. Gao K, Zhang YG, Wang Z, Ding H (2019) Recent development on the [5+2] cycloadditions and their application in natural product synthesis. Chem Commun 55(13). https://doi.org/10.1039/c8cc09077g

  33. Yin Z, He Y, Chiu P (2018) Application of (4+3) cycloaddition strategies in the synthesis of natural products. Chem Soc Rev 47(23). https://doi.org/10.1039/c8cs00532j

  34. Kącka-Zych A, Jasiński R (2022) Mechanistic aspects of the synthesis of seven-membered internal nitronates via stepwise [4+3] cycloaddition involving conjugated nitroalkenes: molecular electron density theory computational study. J Comput Chem 43(18). https://doi.org/10.1002/jcc.26885

  35. Ylijoki KEO, Stryker JM (2013) Cycloaddition reactions in organic and natural product synthesis. Chem Rev 113(3). https://doi.org/10.1021/cr300087g

  36. Toda Y, Shimizu M, Iwai T, Suga H (2018) Triethylamine enables catalytic generation of oxidopyrylium ylides for [5+2] cycloadditions with alkenes: an efficient entry to 8-oxabicyclo[3.2.1]octane frameworks. Adv Synth Catal 360(12). https://doi.org/10.1002/adsc.201800290

  37. Sammes PG, Street LJ (1983) The preparation and some reactions of 3-oxidopyrylium. J Chem Soc Perkin Trans. https://doi.org/10.1039/p19830001261

    Article  Google Scholar 

  38. Zhao C, Glazier DA, Yang D et al (2019) Intermolecular regio- and stereoselective hetero-[5+2] cycloaddition of oxidopyrylium ylides and cyclic imines. Angew Chemie Int Ed 58(3). https://doi.org/10.1002/anie.201811896

  39. Bejcek LP, Garimallaprabhakaran AK, Suyabatmaz DM et al (2019) Maltol- and allomaltol-derived oxidopyrylium ylides: methyl substitution pattern kinetically influences [5 + 3] dimerization versus [5+2] cycloaddition reactions. J Org Chem 84(22). https://doi.org/10.1021/acs.joc.9b02137

  40. Domingo LR, Zaragozá RJ (2000) Toward an understanding of the mechanisms of the intramolecular [5+2] cycloaddition reaction of γ-pyrones bearing tethered alkenes. A theoretical study. J Org Chem 65(18). https://doi.org/10.1021/jo000061f

  41. Zahnoune R, Asserne F, Ourhriss N et al (2022) Theoretical survey of Diels-Alder between acrylic acid and isoprene catalyzed by the titanium tetrachloride and titanium tertafluoride. J Mol Struct 2022:1269. https://doi.org/10.1016/j.molstruc.2022.133630

    Article  CAS  Google Scholar 

  42. Siadati SA, Rezazadeh S (2022) The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology. Sci Radices 01(01). https://doi.org/10.58332/v22i1a04

  43. Asserne F, Ouahdi Z, Hakmaoui Y et al (2023) Molecular docking, regio, chemo and stereoselectivity study of the [3+2] cycloaddition reaction between pyridazi-3-one and nitrilimine. Chemistry Africa. https://doi.org/10.1007/s42250-023-00735-y

    Article  Google Scholar 

  44. Barhoumi A, Ryachi K, Belghiti ME, Chafi M, Tounsi A, Syed A, El idrissi M, Wong LS, Zeroual A (2023) Chromatography scrutiny, molecular docking, clarifying the selectivities and the mechanism of [3+2] cycloloaddition reaction between linallol and chlorobenzene-nitrile-oxide. J Fluoresc. https://doi.org/10.1007/s10895-023-03411-z

    Article  PubMed  Google Scholar 

  45. Ouled Aitouna AB, Belghiti ME, Eşme A, Ouled Aitouna AN, Salah M, Chekroun A, El Alaoui El Abdallaoui H, Benharref A, Mazoir N, Zeroual A, Nejjari C (2021) Divulging the regioselectivity of epoxides in the ring-opening reaction, and potential himachalene derivatives predicted to target the antibacterial activities and SARS-CoV-2 spike protein with docking study. J Mol Struct 1244:130864. https://doi.org/10.5267/j.ccl.2023.3.008

    Article  Google Scholar 

  46. Domingo LR (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21(10). https://doi.org/10.3390/molecules21101319

  47. Seeman JI, Fukui K (2022) Frontier molecular orbital theory, and the Woodward-Hoffmann rules. Part II. A sleeping beauty in chemistry. Chem Rec 22(4). https://doi.org/10.1002/tcr.202100300

  48. Becke AD (1990) Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9). https://doi.org/10.1063/1.458517

  49. Matta CF (2017) On the connections between the quantum theory of atoms in molecules (QTAIM) and density functional theory (DFT): a letter from Richard F. W. Bader to Lou Massa. Struct Chem 28(5). https://doi.org/10.1007/s11224-017-0946-7

  50. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18). https://doi.org/10.1021/ja100936w

  51. Chai J Da, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44). https://doi.org/10.1039/b810189b

  52. Hehre WJ (1976) Ab initio molecular orbital theory. Acc Chem Res 9(11). https://doi.org/10.1021/ar50107a003

  53. Fukui K (1981) The path of chemical reactions - the IRC approach. Acc Chem Res 14(12). https://doi.org/10.1021/ar00072a001

  54. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94(7). https://doi.org/10.1021/cr00031a013

  55. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9). https://doi.org/10.1021/ja983494x

  56. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26). https://doi.org/10.1021/ja00364a005

  57. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3c129::AID-JCC13%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  58. Parr G, Yang W (1989) Density-functional theory of atoms and molecules. R Oxford University Press, New York, Oxford

    Google Scholar 

  59. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct Theochem 865(1–3). https://doi.org/10.1016/j.theochem.2008.06.022

  60. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58(22). https://doi.org/10.1016/S0040-4020(02)00410-6

  61. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2). https://doi.org/10.1063/1.449486

  62. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23(6):597–604. https://doi.org/10.1016/S0097-8485(99)00039-X

    Article  CAS  Google Scholar 

  63. Dennington R, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. GaussView, Version 6 Semichem Inc Shawnee Mission KS

  64. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1). https://doi.org/10.1016/0263-7855(96)00018-5

  65. Borkotoky S (2012) Docking studies on HIV integrase inhibitors based on potential ligand binding sites. Int J Bioinforma Biosci 2(3):21–29. https://doi.org/10.5121/ijbb.2012.2303

    Article  Google Scholar 

  66. Morris GM, Ruth H, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/JCC.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14). https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

  68. Delano WL (2002) The PyMOL molecular graphics system. CCP4 Newsl Protein Crystallogr 40(1)

  69. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7. https://doi.org/10.1038/srep42717

  70. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/J.DDTEC.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  71. Guan L, Yang H, Cai Y et al (2019) ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 10(1):148–157. https://doi.org/10.1039/C8MD00472B

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project (number RSP2023R15), King Saud University, Riyadh, Saudi Arabia and we would like to thank Ling Shing Wong for supporting this research.

Funding

The authors extend their appreciation to the Researchers Supporting Project (number RSP2023R15), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Anas Ouled Aitouna, Abdellah Zeroual: article writing. Abdellah Zeroual and Noureddine Mazoir: numerical calculations; Abdallah M. Elgorban, Ali H. Bahkali, and Asad Syed: acquisition of data; Meenakshi Verma, Radomir Jasiński, and Mohammed El idrissi: final review and editing. All authors: analysis and interpretation of data and drafting the article.

Corresponding author

Correspondence to Mohammed El idrissi.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors.

Consent to participate

The manuscript is approved by all authors for publication.

Consent for publication

The consent for publication was obtained from participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6082 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aitouna, A.O., Mazoir, N., Zeroual, A. et al. Molecular docking, expounding the regiospecificity, stereoselectivity, and the mechanism of [5+2] cycloaddition reaction between ethereal ether and oxidopyrylium. Struct Chem 35, 841–852 (2024). https://doi.org/10.1007/s11224-023-02239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02239-4

Keywords

Navigation