Skip to main content
Log in

Quantum chemical study on inclusion of linalool into cucurbiturils

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Inclusion of one of the natural enantiomers of linalool ((R)-(-)-linalool, simply LIN) into cucurbit[n]urils (CB[n]s) was investigated by means of DFTB + and DFT computations with Grimme’s dispersion correction and geometric counterpoise treatment. Among different cucurbit[n = 5 ~ 9]urils, some diastereoisomers of CB[7] can form relatively stable inclusion complexes (LIN@CB[n]s) with LIN in water. Hydrogen bonds and dispersion interaction between CB[n] and LIN play an important role in formation of the inclusion complexes. Molecular electrostatic potential, non-covalent interaction, and natural bond analysis were carried out for interpretation of stability of the relatively stable LIN@CB[7]s. Theoretical computations showed that LIN@i-CB[7] was the most stable and it can offer increased solubility to linalool in water than the normal CB[7]. The calculated electronic spectra of linalool, i-CB[7], and LIN@i-CB[7] showed that inclusion of linalool into i-CB[7] can be useful in protection of linalool from photo-degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ulland S, Ian E, Borg-Karlson AK, Mustaparta H (2006) Discrimination between enantiomers of linalool by olfactory receptor neurons in the Cabbage Moth Mamestra brassicae (L.). Chem Senses 31:25

  2. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints Trends Plant Sci 21:1000

    Article  CAS  PubMed  Google Scholar 

  3. de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol Adv 32:1550

    Article  PubMed  Google Scholar 

  4. Ishiguro T, Sakata Y, Arima H, Iohara D, Anraku M, Uekama K, Hirayama F (2018) Release control of fragrances by complexation with β-cyclodextrin and its derivatives. J Incl Phenomena Macrocyc Chem 92:147

    Article  CAS  Google Scholar 

  5. Xiao Z, Xu Z, Zhu G (2017) Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material. Food Sci Technol 37:613

    Article  Google Scholar 

  6. Lyu Y, Ren H, Yu M, Li X, Li D, Mu C (2017) Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. Carbohyd Polym 174:1095

    Article  CAS  Google Scholar 

  7. Rani PU, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Science 87:191

    Article  Google Scholar 

  8. Ayhan MM, Ozcan E, Alkan F, Cetin M, İlker UD, Bardelang BC (2022) External complexation of BODIPYs by CB[7] improves in-cell fluorescence imaging. Mater Adv 3:547

    Article  CAS  Google Scholar 

  9. Sin K, Ko S, Kim C, Kim H, Son M (2018) Theoretical investigation on electronic structure and stability of some inverted cucurbiturils by density functional theory. Supramol Chem 31:95

    Article  Google Scholar 

  10. Fedorova OA, Chernikova EY, Tkachenko SV, Grachev AI, Godovikov IA, Fedorov YV (2019) Self-sorting processes in a stimuli-responsive supramolecular systems based on cucurbituril, cyclodextrin and bisstyryl guests. J Incl Phenom Macrocycl Chem 94:201

    Article  CAS  Google Scholar 

  11. Sin K, Kim C, Ko S, Hwang T, Han Y, Pak Y (2022) Inclusion of thymol into cucurbiturils: density functional theory approach with dispersion correction and natural bond orbital analysis. J Incl Phenom Macrocycl Chem. https://doi.org/10.1007/s10847-022-01135-4

  12. del Pozo M, Fernández Á, Quintana C (2018) On-line competitive host-guest interactions in a turn-on fluorometric method to amantadine determination in human serum and pharmaceutical formulations. Talanta 79:124

    Article  Google Scholar 

  13. Gangemi CMA, Puglisi R, Pappalardo A, Sfrazzetto GT (2018) Supramolecular complexes for nanomedicine. Bioorg Med Chem Lett 28:3290

    Article  CAS  PubMed  Google Scholar 

  14. Sin K, Ko S, Kim C, Pak S, Kim H, Kim C (2020) Quantum Chemical Investigation on Interaction of 5-Fluorouracil with Cucurbiturils. Monatshefte für Chemie - Chemical Monthly 151:721

    Article  CAS  Google Scholar 

  15. Seifert G, Joswig J (2012) Density-functional tight binding-an approximate density-functional theory method. WIREs Comput Mol Sci 2:456

    Article  CAS  Google Scholar 

  16. Zerrouki1 M, Benkaci-Ali F (2018) DFT study of the mechanisms of nonenzymatic DNA repair by phytophenolic antioxidants. J Mol Modeling 24:78

  17. Jitonnom J, Ketudat-Cairns JR, Hannongbua S (2017) QM/MM modeling of the hydrolysis and transfructosylation reactions of fructosyltransferase from Aspergillus japonicas, an enzyme that produces prebiotic fructooligosaccharide. J Mol Graphics Modelling 79:175

    Article  Google Scholar 

  18. Venkataramanan NS, Suvitha A, Kawazoe Y (2018) Unravelling the nature of binding of cubane and substituted cubanes within cucurbiturils: A DFT and NCI study. J Mol Liquids 260:18

    Article  CAS  Google Scholar 

  19. Yang L, Li D, Guo B, Wei D (2019) Theoretical study on the inclusion interaction of β-cyclodextrin with gabapentin and its stability. J Struct Chem 60:564

    Article  CAS  Google Scholar 

  20. Lukin O, Dolgonos G, Leszczynski J (2017) A comprehensive test of computational approaches for evaluation of cyclodextrin complexes. Self-inclusion in monosubstituted β-cyclodextrins–a case study. Tetrahedron 73:5302

  21. Damnjanović M, Tatjana V, Ivanka M (2016) Symmetry-based Study of MoS2 and WS2 Nanotubes. Israel J Chem 57:450

    Article  Google Scholar 

  22. Neto AMJC, Mota GVS, Borges RS, Albuquerque MLS (2010) R-(-)-linalool UV spectroscopy: The experimental and theoretical Study. J Comput Theor Nanosci 7(2):1

    Article  Google Scholar 

  23. Jankovic N, Markovic S, Bugarcic Z (2014) DFT study of the mechanism of the phenylselenoetherification reaction of linalool. Monatsh Chem 145:1287

    Article  CAS  Google Scholar 

  24. Ahmed SA, Seth S, Gautam RK, Seth D (2018) Inclusion of a coumarin derivative inside the macrocyclic hosts: A spectroscopic, thermodynamic and theoretical investigation. J Mol Liquids 264:550

    Article  CAS  Google Scholar 

  25. Mirzaeva IV, Moroz NK, Andrienko IV, Kovalenko EA (2018) Interaction between carboplatin and cucurbit[7]uril studied by means of multinuclear NMR spectroscopy and DFT calculations. J Mol Struct 1163:68

    Article  ADS  CAS  Google Scholar 

  26. Kruse H, Goerigk L, Grimme S (2012) Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: Understanding and correcting the problem. J Org Chem 77:10824

    Article  CAS  PubMed  Google Scholar 

  27. Neese F, Wennmohs F (2019) ORCA (An ab initio, DFT and semiempirical SCF-MO package - Version 4.2.1). Max-Planck-Institut für Kohlenforschung, Ruhr, Germany

  28. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J Chem Phys 89:2193

  29. Petersson GA, Malick DK, Wilson WG, Ochterski JW, Montgomery JA Jr, Frisch MJ (1998) Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. J Chem Phys 109:10570

    Article  ADS  CAS  Google Scholar 

  30. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456

    Article  CAS  PubMed  Google Scholar 

  31. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consist and accurate ab Initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  ADS  PubMed  Google Scholar 

  32. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669

    Article  CAS  PubMed  Google Scholar 

  33. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J, Beratan DN, Yang W (2011) NCIPLOT: A program for plotting noncovalent interaction regions. J Chem Theor Comp 7:625

    Article  CAS  Google Scholar 

  34. Jmol (2017) An open-source Java viewer for chemical structures in 3D. Available from: http://sourceforge.net/projects/jmol/

  35. Depizzol DB, Paiva MHM, Dos Santos TO, Gaudio AC (2005) MoCalc: A new graphical user interface for molecular calculations. J Comput Chem 26:142

    Article  CAS  PubMed  Google Scholar 

  36. Nora M, Fatiha M, Leila N, Sakina H, DjamelEddine K (2015) Density functional study of inclusion complex of Albendazole/cucurbit[7]uril: Structure, electronic properties, NBO, GIAO and TD-DFT analysis. J Mol Liquids 211:40

    Article  CAS  Google Scholar 

  37. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs Comput Mol Sci 2:1

    Article  CAS  Google Scholar 

  38. Glendening ED, Badenhoop JK, Reed IE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO. Version 3.1 Theoretical Chemistry Institute. University of Wisconsin, Madison, WI

  39. Costa MPM, Pratesa LM, Baptistab L, Cruza MTM, Ferreira ILM (2018) Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study. Carbohyd Polym 198:51

    Article  CAS  Google Scholar 

  40. Zerner M, Loew GH, Kirhner RF, Mueller-Westerhoff UT (1980) An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene J Am Chem Soc 102:589

    Article  CAS  Google Scholar 

  41. Rezvani M, Ganji MD, Jameh-Bozorghi S, Niazi A (2018) DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrinemetalloporphyrine triads based dye-sensitized solar cells. Spectrochimica Acta Part A: Mol Biomol Spectroscopy 194:57

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.R. Sin designed simulations, C.J. Kim prepared models, S.G. Ko calculated the geometric structures, T.M. Hwang calculated the electronic structures, K.H. Pak discussed NBO analysis, and M.B. Kim wrote the manuscript.

Corresponding author

Correspondence to Kye-Ryong Sin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Geolocation information

Faculty of Chemistry, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People’s Republic of Korea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Inclusion complexes of linalool into cucurbiturils in aqueous solution were studied by DFTB + and DFT.

• Inverted CB[7]s can form more stable inclusion complexes than other CB[n]s.

• Hydrogen bond and non-covalent interaction play an important role for inclusion.

Supplementary Information

Below is the link to the electronic supplementary material.

11224_2023_2191_MOESM1_ESM.docx

Supplementary file1 Supplementary data to this article (atomic coordinates , bond length changes, natural populations for LIN@CB[7]s) can be found online at http://dx.doi.org/xxx. (DOCX 374 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin, KR., Kim, CJ., Ko, SG. et al. Quantum chemical study on inclusion of linalool into cucurbiturils. Struct Chem 35, 413–420 (2024). https://doi.org/10.1007/s11224-023-02191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02191-3

Keywords

Navigation