Skip to main content
Log in

Exploring nonlinear optical properties in a hybrid dihydrogen phosphate system: an experimental and theoretical approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The controlled slow evaporation process conducted at room temperature has produced a novel hybrid material denoted as (2-hydroxyethyl) trimethylammonium dihydrogen phosphate [2-HDETDHP] (C5H14NO+, H2PO4), synthesized through the solution growth method. X-ray crystallography analysis reveals a triclinic structure with a filling rate of P and a Z value of 2. This hybrid material displays noteworthy absorption characteristics in the middle and far ultraviolet regions. UV-visible spectroscopy further establishes its transparency in the visible and near-visible ultraviolet domains. FT-IR spectroscopy examines various vibration modes, elucidating their relationships with the functional groups within the structure. Two- and three-dimensional fingerprint maps, coupled with three-dimensional crystal structures through Hirshfeld Surface Analysis, unveil the dominance of O•••H and H•••H interactions in the structure, comprising 49.40% and 50.40%, respectively. Fingerprint plots derived from the Hirshfeld surface assess the percentages of hydrogen bonding interactions, with 80.6% attributed to a fragment patch. The experiment of antimicrobial efficacy of a synthesized product, conducted in triplicate, demonstrated the synthesized product’s potential antimicrobial activity.

Methods

Hirshfeld surfaces are employed to investigate intermolecular hydrogen bonding, specifically within single phosphate groups. The molecular structure of 2-HDETDHP was refined using single-crystal X-ray analysis, while its optical characteristics were examined through UV-visible spectroscopy. FT-IR spectroscopy is employed for the assignment of molecular vibrations of functional groups in the affined structure. Quantum calculations were executed with the GAUSSIAN 09 software package at B3LYP/6-311G level of theory, to optimize the molecular geometries. The antimicrobial efficacy of a synthesized product was evaluated using the disc diffusion method against antibiotic-resistant Candida albicans, Candida tropicalis, Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Microorganisms were cultured on nutrient agar, and inhibition zones were measured after incubation, with streptomycin and amphotericin as positive controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. He M, Leslie TM, Sinicropi JA (2002) α-Hydroxy ketone precursors leading to a novel class of electro-optic acceptors. Chem Mater 14(5):2393–2400

    Article  CAS  Google Scholar 

  2. Mao SS, Ra Y, Guo L, Zhang C, Dalton LR, Chen A, ... Steier WH (1998) Progress toward device-quality second-order nonlinear optical materials. 1. Influence of composition and processing conditions on nonlinearity, temporal stability, and optical loss. Chem Mater 10(1):146–155

  3. Harper AW, Mao SSH, Ra Y, Zhang C, Zhu J, Dalton LR, ... Steier WH (1999) Progress toward device-quality second-order nonlinear optical materials: 2. Enhancement of electric field poling efficiency and temporal stability by modification of isoxazolone-based high μβ chromophores. Chem Mater 11(10):2886–2891

  4. Oueslati J, Kefi R, Lefebvre F, Rzaigui M, Nasr CB (2009) Crystal structure and spectroscopic studies of a new organic dihydrogenmonophosphate [2-NH2-6-CH3-C4H3N2O] 2 (H2PO4) 2. Phosphorus Sulfur Silicon 184(2):499–513

    Article  CAS  Google Scholar 

  5. Mrad ML, Nasr CB, Rzaigui M (2006) Synthesis and characterization of a new p-phenylenediammoniumdihydrogenmonophosphate [p-NH3C6H4NH3][H2PO4] 2. Mater Res Bull 41(7):1287–1294

    Article  CAS  Google Scholar 

  6. Baouab L, Jouini A (1998) Crystal structures and thermal behavior of two new organic monophosphates. J Solid State Chem 141(2):343–351

    Article  CAS  Google Scholar 

  7. Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfeffer FM (2006) Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250(23–24):3094–3117. https://doi.org/10.1016/j.ccr.2006.08.017

    Article  CAS  Google Scholar 

  8. Oueslati J, Kefi R, Lefebvre F, Rzaigui M, Ben Nasr C (2009) Crystal structure and spectroscopic studies of a new organic dihydrogenmonophosphate [2-NH2–6- CH3-C4H3N2O]2(H2PO4)2. Phosphorus. Sulfur Silicon Relat Elem 184:499–513. https://doi.org/10.1080/10426500802196794

    Article  CAS  Google Scholar 

  9. Udoetok IA, Faye O, Wilson LD (2020) Adsorption of phosphate dianions by hybrid inorganic–biopolymer polyelectrolyte complexes: experimental and computational studies. ACS Appl Polym Mater 2(2):899–910

    Article  CAS  Google Scholar 

  10. Bhanja Piyali, AsimBhaumik (2016) Organic–inorganic hybrid metal phosphonates as recyclable heterogeneous catalysts. ChemCatChem 8(9):1607–1616

    Article  CAS  Google Scholar 

  11. Ben Hamada L, Jouini A (2006) Crystal structure of a new organic dihydrogenomonophosphate (C6H8N3O)2(H2PO4)2. Mater Res Bull 41(10):1917–1924. https://doi.org/10.1016/j.materresbull.2006.03.005

    Article  CAS  Google Scholar 

  12. Barhoumi A, Suñol JJ, Belhouchet M (2018) Crystal structure, vibrational studies and optical properties of a new organic phosphate (C12H14N2S) (H2PO4)2. J Mol Struct 1173:448–455. https://doi.org/10.1016/j.molstruc.2018.06.115

    Article  CAS  Google Scholar 

  13. Amendola V, Boiocchi M, EstebanGomez D, Fabbrizzi L, Monzani E (2005) Chiral receptors for phosphate ions. Org Biomol Chem 3:2632–12239. https://doi.org/10.1039/B504931H

    Article  CAS  PubMed  Google Scholar 

  14. Maharani NY, CyracPeter A, Gopinath S, Tamilselvan S, Vimalan M, VethaPotheher I (2016) Growth and characterization of amino based organic nonlinear optical L-Lysine-L-Aspartate (LLA) single crystal for electo-optic applications. J Mater Sci: Mater Electron 27:5006–5015. https://doi.org/10.1007/s10854-016-4387-7

    Article  CAS  Google Scholar 

  15. Morawski P, Gramza M, Goslar J, Hilczer W, Szczepanska L, Hoffmann SK (1998) A reorientation of the PO3-groups and radiation damage effect in ferroelectric phase transition studied by CW-EPR of PO3 2- radical in glycine⋅H3PO3. Ferroelectr Lett 23:121–126. https://doi.org/10.1080/07315179808204187.Taylor&Francis

    Article  CAS  Google Scholar 

  16. Thangarasu S, Suresh Kumar S, Athimoolam S, Sridhar B, Asath Bahadur S, Shanmugam R, Thamaraichelvan A (2014) Synthesis, structure, spectral, thermal analyses and DFT calculation of a hydrogen bonded crystal: 2-Aminopyrimidiniumdihydrogenphosphate monohydrate. J Mol Struct 1074:107–117. https://doi.org/10.1016/j.molstruc.2014.05.054

    Article  CAS  Google Scholar 

  17. Chitradevi A, Suresh Kumar S, Athimoolam S, Asath Bahadur S, Sridhar B (2015) Single crystal XRD, vibrational spectra, quantum chemical and thermal studies on a new semi-organic crystal: 4-aminium antipyrine chloride. J Mol Struct 1099:58–67. https://doi.org/10.1016/j.molstruc.2015.06.022

    Article  CAS  Google Scholar 

  18. Sessler JL, Cho D-G, Lynch V (2006) Diindolylquinoxalines: effective indole-based receptors for phosphate anion. J Am Chem Soc 128:16518–16519. https://doi.org/10.1021/ja067720b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirsch AH, Fischer F, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem Int Ed 46(3):338–352. https://doi.org/10.1002/(ISSN)1521-377310.1002/anie.v46:310.1002/anie.200603420

    Article  CAS  Google Scholar 

  20. Brandan SA, Díaz SB, Lopez Gonzalez JJ, Disalvo EA, Ben A (2007) Altabef, experimental and theoretical study of the hydration of phosphate groups in esters of biological interest. Spectroc Acta A: Mol Biomol Spectrosc 66:884–897. https://doi.org/10.1016/j.saa.2006.05.005

    Article  CAS  Google Scholar 

  21. Nagapandiselvi P, Baby C, Gopalakrishnan R (2016) Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal. Mater Res Bull 81:33–42. https://doi.org/10.1016/j.materresbull.2016.04.026

    Article  CAS  Google Scholar 

  22. Krishnan P, Gayathri K, Bhagavannarayana G, Gunasekaran S, Anbalagan G (2013) Growth, nonlinear optical, thermal, dielectric and laser damage threshold studies of semiorganic crystal: monohydrate piperazine hydrogen phosphate. Spectrochim Acta Part A Mol Biomol Spectrosc 102:379–385. https://doi.org/10.1016/j.saa.2012.10.004

    Article  CAS  Google Scholar 

  23. Debrus S, Ratajczak H, Venturini J, Pinçon N, Baran J, Barycki J, Glowiak T, Pietraszko A (2002) Novel nonlinear optical crystals of noncentrosymmetric structure based on hydrogen bonds interactions between organic and inorganic molecules. Synth Met 127(1–3):99–104. https://doi.org/10.1016/S0379-6779(01)00607-5

    Article  CAS  Google Scholar 

  24. Robert R, Justin Raj C, Krishnan S, Jerome Das S (2010) Growth, theoretical and optical studies on potassium dihydrogen phosphate (KDP) single crystals by modified Sankaranarayanan Ramasamy (mSR) method. Phys B 405:20–24

    Article  CAS  Google Scholar 

  25. Latoui M, AitYoucef HC, Benghanem F, Dorcet V, Bourzami R (2024) New organic-inorganic hybrid ionic material Tris (melaminium) monodrogenphosphatedihydrogenphosphate tetrahydrate: synthesis, single-crystal structure, Hirshfeld surface analysis, spectroscopic characterization, and thermal behavior. J Mol Struct 1300:137312

    Article  CAS  Google Scholar 

  26. Lira-Cantu M, Gomez-Romero P (1998) Electrochemical and chemical syntheses of the hybrid organic−inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes. Chem Mater 10:698–704. https://doi.org/10.1021/cm970107u

    Article  CAS  Google Scholar 

  27. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947. https://doi.org/10.1126/science.286.5441.945

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez C, Soler-Illia GJAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic−inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13:3061–3083. https://doi.org/10.1021/cm011061e

    Article  CAS  Google Scholar 

  29. Mitzi DB (2001) Thin-film deposition of organic− inorganic hybrid materials. Chem Mater 13:3283–3298. https://doi.org/10.1021/cm0101677

    Article  CAS  Google Scholar 

  30. Cordoncillo E, Escribano P, Guaita FJ, Philippe C, Viana B, Sanchez C (2002) Optical properties of lanthanide doped hybrid organic-inorganic materials Technol. J Sol Gel Sci Technol 24:155–165. https://doi.org/10.1023/A:1015204227347

    Article  CAS  Google Scholar 

  31. Sanchez C, Lebeau B, Chaput F, Boilot JP (2003) Optical properties of functional hybrid organic–inorganic nanocomposites. Adv Mater 15:1969–1994. https://doi.org/10.1002/adma.200300389

    Article  CAS  Google Scholar 

  32. Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic–inorganic materials. J Mater Chem 15:3787–3811. https://doi.org/10.1039/B507309J

    Article  CAS  Google Scholar 

  33. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592. https://doi.org/10.1039/B509097K

    Article  CAS  Google Scholar 

  34. Iramain MA, Ledesma AE, Brandán SA (2019) Structural properties and vibrational analysis of potassium 5-Br-2-isonicotinoyltrifluoroborate salt. Effect of Br on the isonicotinoyl ring. J Mol Struct 1184:146–156

    Article  CAS  Google Scholar 

  35. Rafik A, Tüzün B, Zouihri H, Ammari LE, Safi ZS, Wazzan NA, Guedira T (2024) Crystal growth, morphological, mechanical, spectroscopic studies, optical properties, molecular docking, ADME/T, Hirshfeld surfaces analysis and theoretical calculations of hybrid organic-inorganic phosphate compound. Inorg Chem Commun 160:111828

    Article  CAS  Google Scholar 

  36. Sheldrick GM (2015) SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr Section A: Foundations and Advances 71(1):3–8

    Article  PubMed Central  Google Scholar 

  37. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45(4):849–854

    Article  CAS  Google Scholar 

  38. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, ... Wood PA (2008) Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41(2):466–470

  39. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54:1006–1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frisch MJ (2009) gaussian09. http://www.gaussian.com/

  41. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Heydarian A, Falah F, Yazdi FT, Mortazavi SA (2024) Optimization of dairy sludge fermentation culture medium to produce extracts containing bioactive peptides using co-culture of Limosilactobacillus fermentum and Saccharomyces cerevisiae. J Funct Foods 112:105982

    Article  CAS  Google Scholar 

  43. Moon JH, Yang S (2010) Chemical aspects of three-dimensional photonic crystals. Chem Rev 110(1):547–574

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Niu S, Lai W, Yu T, Ma Y, Gao H, ... Ge Z (2019) Crystal morphology prediction of energetic materials grown from solution: insights into the accurate calculation of attachment energies. CrystEngComm 21(33):4910–4917

  45. Meenatchi V, Meenakshisundaram SP (2015) Synthesis, growth, spectral studies, first-order molecular hyperpolarizability and Hirshfeld surface analysis of isonicotinohydrazide single crystals. RSC Adv 5(79):64180–64191

    Article  CAS  Google Scholar 

  46. Chandini KM, Nagesh Khadri MJ, Amoghavarsha N et al (2022) Synthesis, crystal structure, Hirshfeld surface analysis, energy frameworks and computational studies of Schiff base derivative. Heliyon 8:e10047. https://doi.org/10.1016/j.heliyon.2022.e10047

  47. Wang L, Xiao M, Wang D (2019) Single crystal structure, hydrogen bonding interaction, charge transfer and thermal properties of a new guanidine derivative crystal: phosphate bis-guanidinoacetate. J Mol Struct 1195:883–890

    Article  CAS  Google Scholar 

  48. Thangarasu S, Kumar SS, Athimoolam S, Sridhar B, Bahadur SA, Shanmugam R, Thamaraichelvan A (2014) Synthesis, structure, spectral, thermal analyses and DFT calculation of a hydrogen bonded crystal: 2-aminopyrimidinium dihydrogenphosphate monohydrate. J Mol Struct 1074:107–117

    Article  CAS  Google Scholar 

  49. Jaikumar P, Sathiskumar S, Balakrishnan T, Ramamurthi K (2016) Growth, structural, optical, thermal and mechanical properties of cytosinium hydrogen selenite: a novel nonlinear optical single crystal. Mater Res Bull 78:96–102

    Article  CAS  Google Scholar 

  50. Mahadik A, Soni PH, Chaudhari K (2021) Effects of electric field and doping on crystal growth of potassium dihydrogen phopshate. Opt Mater 113:110882

    Article  CAS  Google Scholar 

  51. Murugan T, Murugesan KS, Boaz BM (2022) Growth, linear and nonlinear optical property and dielectric studies of an efficient organic ionic single crystal: 2-amino-5-methyl-pyridinium trifluoroacetate for optoelectronic devices. Indian J Phys 96(13):3797–3808

    Article  CAS  Google Scholar 

  52. Backov R, Bonnet B, Jones DJ, Rozière J (1997) Assembly of partially oxidized tetrathiafulvalene in layered phosphates. Formation of conducting organic− inorganic hybrids by intercalation. Chem Mater 9(8):1812–1818

    Article  CAS  Google Scholar 

  53. Suriya M, Boaz BM, Chakkaravarthi G, Vinitha G, Murugesan KS (2019) Synthesis, crystal growth, structural, spectral, thermal, optical characteristics and density functional theory calculations of a novel third-order nonlinear optical material: 4-acetylanilinium dihydrogen phosphate (4AADP) single crystals. J Mol Struct 1180:330–343

    Article  CAS  Google Scholar 

  54. Chennakrishnan S, Ravikumar SM, Shanthi C, Srineevasan R, Kubendiran T, Sivavishnu D, Packiyaraj M (2017) Synthesis and investigation on growth and physiochemical properties of semi-organic nonlinear optical crystal: L-glutamic acid zinc chloride. J Taibah Univ Sci 11:955–965. https://doi.org/10.1016/j.jtusci.2017.01.001

    Article  Google Scholar 

  55. Reddy RR, Ahammed YN, Gopal KR, Azeem PA, Rao TVR, Reddy PM (2000) Optical electronegativity, bulk modulus and electronic polarizability of materials. Opt Mater 14(4):355–358

    Article  CAS  Google Scholar 

  56. Souri D, Shomalian K (2009) Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60–x) V2O5–40TeO2–xSb2O3 glasses. J Non-Cryst Solids 355(31–33):1597–1601

    Article  CAS  Google Scholar 

  57. Tasi G, Pálinkó I, Nyerges L, Fejes P, Foerster H (1993) Calculation of electrostatic potential maps and atomic charges for large molecules. J Chem Inf Comput Sci 33(3):296–299

    Article  CAS  Google Scholar 

  58. Moad AJ, Moad CW, Perry JM, Wampler RD, Goeken GS, Begue NJ, ... Simpson GJ (2007) NLOPredict: visualization and data analysis software for nonlinear optics. J Comput Chem 28(12):1996–2002

  59. Ye JT, Liu JH, Zhang Q, Qiu YQ, Wang LH (2020) Tuning of second-order nonlinear optical properties based on [2.2] paracyclophanes isomer: the relative configuration and polarizable environment. J Phys Chem C 124(39):21692–21701

    Article  CAS  Google Scholar 

  60. Maury O, Le Bozec H (2005) Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes. Acc Chem Res 38:691–704. https://doi.org/10.1021/ar020264l

    Article  CAS  PubMed  Google Scholar 

  61. Perry JM, Moad AJ, Begue NJ, Wampler RD, Simpson GJ (2005) Electronic and vibrational second-order nonlinear optical properties of protein secondary structural motifs. J Phys Chem B 109(42):20009–20026

    Article  CAS  PubMed  Google Scholar 

  62. Golaraei A, Kontenis L, Mirsanaye K, Krouglov S, Akens MK, Wilson BC, Barzda V (2019) Complex susceptibilities and chiroptical effects of collagen measured with polarimetric second-harmonic generation microscopy. Sci Rep 9(1):12488

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stegeman GI, Stegeman RA (2012) Nonlinear optics: phenomena, materials and devices. John Wiley & Sons

    Google Scholar 

  64. Kuniyil MJK, Padmanaban R (2019) Theoretical insights into the structural, photophysical and nonlinear optical properties of phenoxazin-3-one dyes. New J Chem 43(34):13616–13629

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the support of funding from Researchers Supporting Project number (RSPD2024R1100), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Abdellatif Rafik , Hafid Zouihri and Taoufiq Guedira : Conceptualization, Methodology, Software. Abdellatif Rafik, Fatima Lakhdar and Hafid Zouihri : Data curation. Mohammed Salah, and Abdellah Zeroual: Supervision. Nivedita Acharjee and Mohammad Shahidul Islam: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Mohammed Salah.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 362 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafik, A., Lakhdar, F., Zouihri, H. et al. Exploring nonlinear optical properties in a hybrid dihydrogen phosphate system: an experimental and theoretical approach. J Mol Model 30, 151 (2024). https://doi.org/10.1007/s00894-024-05936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05936-x

Keywords

Navigation