Skip to main content

Advertisement

Log in

DFT study of the mechanism of the phenylselenoetherification reaction of linalool

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A systematic study of the mechanism of phenylselenoetherification of a naturally occurring alcohol linalool with PhSe+ was performed at the B3LYP/6-311+G(d,p) level of theory, in conjunction with the CPCM solvation model. The syn and anti reaction pathways were examined in the absence and presence of some Lewis bases (quinoline, piperidine, pyridine, and triethylamine) as catalysts. It was found that the reaction occurs via the phenylseleniranium intermediate, which further suffers a nucleophilic attack of the oxygen to two olefinic carbon atoms. This intramolecular cyclization yields 5-ethenyl-5-methyl-2-[2-(phenylseleno)-prop-2-yl]tetrahydrofuran as the major product and 6-ethenyl-2,2,6-trimethyl-3-phenylselenotetrahydropyran as the minor product. Lewis bases facilitate the reaction by strong hydrogen bonds between the alcoholic hydrogen and nitrogen of an additive moiety, and they stabilize the product complexes. Since the formation of the tetrahydrofuran derivative requires higher activation energy, but is thermodynamically more stable than the tetrahydropyran, it was concluded that the phenylselenoetherification reaction of linalool is thermodynamically controlled.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nicolaou KC (2003) Tetrahedron 59:6683

    Article  CAS  Google Scholar 

  2. Angle SR, White SL (2000) Tetrahedron Lett 41:8059

    Article  CAS  Google Scholar 

  3. Harmange JC, Figadere B (1993) Tetrahedron Asymmetry 4:1711

    Article  CAS  Google Scholar 

  4. Wesley JW (ed) (1982) Polyether antibiotics naturally occurring ionophores, vol I, II. Marcel Dekker, New York

  5. Huczyński A, Janczak J, Stefańska J, Antoszczak M, Brzezinski B (2012) Bioorg Med Chem Lett 22:4697

    Article  Google Scholar 

  6. Huczyński A, Rutkowski J, Borowicz I, Wietrzyk J, Maj E, Brzezinski B (2013) Bioorg Med Chem Lett 23:5053

    Article  Google Scholar 

  7. Miura K, Okajima S, Hondo T, Nakagawa T, Takahashi T, Hosomi A (2000) J Am Chem Soc 122:11348

    Article  CAS  Google Scholar 

  8. Postema MHD (1992) Tetrahedron 48:8545

    Article  CAS  Google Scholar 

  9. Paramathevar N, Namakkal GR (2010) Tetrahedron 66:599

    Article  Google Scholar 

  10. Gálvez E, Sau M, Romea P, Urpí F, Font-Bardia M (2013) Tetrahedron Lett 54:1467

    Article  Google Scholar 

  11. Sakabe N, Goto T, Hirata Y (1977) Tetrahedron 33:3077

    Article  CAS  Google Scholar 

  12. Niwa M, Endo T, Ogiso S, Furukava H, Yamamura S (1981) Chem Lett 10:1285

  13. Rebuffat S, Davoust D, Molho L, Molho D (1980) Phytochemistry 19:427

    Article  CAS  Google Scholar 

  14. Mulheirn LJ, Beechey RB, Leworthy DP, Osselton MD (1974) J Chem Soc Chem Commun 21:874

  15. Kruger GJ, Steyn PS, Vleffar R, Rabie CJ (1979) J Chem Soc Chem Commun 10:441

  16. Mugesh G, Du Mont WW, Sies H (2001) Chem Rev 101:2125

    Article  CAS  Google Scholar 

  17. Tiecco M (2000) Electrophilic selenium, selenocyclization. In: Wirth T (ed) Topics in current chemistry: organoselenium chemistry, vol 208. Springer, Heidelberg, p 7

    Google Scholar 

  18. Petragnani N, Stefani HA, Valduga CJ (2001) Tetrahedron 57:1411

    Article  CAS  Google Scholar 

  19. Ranganathan S, Muraleedharan KM, Vaish NK, Jayaraman N (2004) Tetrahedron 60:5273

    Article  CAS  Google Scholar 

  20. Wirth T (ed) (2011) Electrophilic selenium reagents in organoselenium chemistry. Wiley-VCH, Weinheim, p 1

    Google Scholar 

  21. Konstantinović S, Bugarčić Z, Milosavljević S, Schroth G, Mihailović MLJ (1995) Liebigs Ann Chem 34:354

    Google Scholar 

  22. Mojsilović BM, Bugarčić ZM (2001) Heteroatom Chem 12:475

    Article  Google Scholar 

  23. Bugarčić ZM, Dunkić JD, Mojsilović BM (2004) Heteroatom Chem 15:468

    Article  Google Scholar 

  24. Bugarčić ZM, Mojsilović BM (2004) Heteroatom Chem 15:146

    Article  Google Scholar 

  25. Bugarčić ZM, Mojsilovic BM, Divac VM (2007) J Mol Cat A Chem 272:288

    Article  Google Scholar 

  26. Divac VM, Rvović MD, Bugarčić ZM (2008) Monatsh Chem 139:1373

    Article  CAS  Google Scholar 

  27. Bugarčić ZM, Petrović BV, Rvović MD (2008) J Mol Cat A Chem 287:171

    Article  Google Scholar 

  28. Divac VM, Puchta R, Bugarčić ZM (2012) J Phys Chem A 116:7783

    Article  CAS  Google Scholar 

  29. Rvović MD, Divac VM, Puchta R, Bugarčić ZM (2011) J Mol Mod 17:1251

    Article  Google Scholar 

  30. Sylvestre M, Longtin APA, Legault J (2007) Nat Prod Commun 2:273

    Google Scholar 

  31. Yu JQ, Lei JC, Zhang XQ, Yu HD, Tian DZ, Liao ZX, Zou GL (2011) Food Chem 126:1593

    Article  CAS  Google Scholar 

  32. Nibret E, Wink M (2010) Phytomedicine 17:911

    Article  CAS  Google Scholar 

  33. Serbetci T, Demirci B, Guzel CB, Kultur S, Erguven M, Baser KHC (2010) Nat Prod Commun 5:1369

    CAS  Google Scholar 

  34. Rvović MD, Divac VM, Janković NŽ, Bugarčić ZM (2013) Monatsh Chem 144:1227

    Article  Google Scholar 

  35. Divac VM, Rvović MD, Bugarčić ZM (2013) React Kinet Mech Catal 110:309

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09. Gaussian Inc, Wallingford

    Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  40. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41

    Article  Google Scholar 

  41. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2009) NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants 172011 and 172016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Marković.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janković, N., Marković, S. & Bugarčić, Z. DFT study of the mechanism of the phenylselenoetherification reaction of linalool. Monatsh Chem 145, 1287–1296 (2014). https://doi.org/10.1007/s00706-014-1226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1226-5

Keywords

Navigation