Skip to main content
Log in

Influence of zinc and copper on the electronic, linear, and nonlinear optical properties of organometallic complexes with phenalenyl radical: a computational study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, we study the influence of different metals on the electronic, linear, and nonlinear optical properties of phenalenyl based complexes by using the density functional theory (DFT) method through the functional B3LYP and the basis set 6-31++G(d,p). The experimentally known zinc-ethyl-dimethyl-phenalenyl (ZEP) has a DFT calculated gap energy Egap of 3.12 eV and a second-order static hyperpolarizability γ0 of 106711.86 au. By doping zinc with copper, we have obtained copper-ethyl-dimethyl-phenalenyl (CEP) with a DFT calculated gap energy Egap of 2.43 eV and a second-order static hyperpolarizability γ0 of 142177.38 au. The calculated average polarizabilities, first- and second-order static hyperpolarizabilities show that the molecular structures are promising materials for application in the nonlinear optical (NLO) devices. Hole and electron mobilities are respectively 2 × 10−3 cm2 V−1 s−1 and 51 × 10−3 cm2 V−1 s−1 for the ZEP dimer. Similarly, the CEP holes and electrons mobilities are respectively 14,336 × 10−3 cm2 V−1 s−1 and 2039 × 10−3 cm2 V1 s−1. These values show that the proposed CEP molecule as well as ZEP have good charge transfer properties that can be used in data storage and electronic devices, thin films, and field effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Pal SK et al (2010) Hysteretic spin and charge delocalization in a phenalenyl-based molecular conductor. J Am Chem Soc 132(48):17258–17264

    Article  CAS  Google Scholar 

  2. Öconnor GD et al (2011) Spectroscopy of the free phenalenyl radical. J Am Chem Soc 133(37):14554–14557. https://doi.org/10.1021/ja206322n

    Article  CAS  Google Scholar 

  3. Morita Y, Suzuki S, Sato K, Takui T (2011) Synthetic organic spin chemistry for structurally well- defined open-shell graphene fragments. Nat Chem 3:197–204

    Article  CAS  Google Scholar 

  4. Craciun S, Donald KJ (2009) Radical bonding: structure and stability of bis(phenalenyl) complexes of divalent metals from across the periodic table. Inorg Chem 48(13):5810–5819. https://doi.org/10.1021/ic900058q

    Article  CAS  PubMed  Google Scholar 

  5. Mandal SK et al (2006) Resonating valence bond ground state in oxygen-functionalized phenalenyl-based neutral radical molecular conductors. J Am Chem Soc 128(6):1982–1994. https://doi.org/10.1021/ja0560276

    Article  CAS  PubMed  Google Scholar 

  6. J. Williams et al., supraconducteurs organiques (Y compris les fullerènes): synthèse, structure, propriétés et théorie. Prentice Hall, Englewood Cliffs, NJ, 1992.

  7. Schulz J, Vögtle F Transition metal complexes of (strained) cyclophanes, Weber E., vol. 172. Berlin: Heidelberg. Springer-verlag Berlin

  8. Stekovic D, Itkis ME (2018) Phenalenyl based neutral radical as a novel electrochromic material modulating visible to short-wave infrared light. RSC Adv 8(73):42068–42072. https://doi.org/10.1039/c8ra09804b

    Article  CAS  Google Scholar 

  9. Coronado E, Epstein A (2009) Spintronique moléculaire et quantique. Comput J Mater Chem 19:1670–1671

    Article  Google Scholar 

  10. Sen TK, Mukherjee A, Modak A, Mandal SK, Koley D (2013) Substitution effect on phenalenyl backbone in the rate of organozinc catalyzed ROP of cyclic esters. Dalton Trans 42(5):1893–1904. https://doi.org/10.1039/C2DT32152A

    Article  CAS  PubMed  Google Scholar 

  11. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

  12. Veved A, Ejuh GW, Djongyang N (2019) Effect of HfO2 on the dielectric, optoelectronic and energy harvesting properties of PVDF. Opt Quant Electron 51(10):330. https://doi.org/10.1007/s11082-019-2042-2

    Article  CAS  Google Scholar 

  13. Alparone A (2013) Linear and nonlinear optical properties of nucleic acid bases. Chem Phys 410:90–98. https://doi.org/10.1016/j.chemphys.2012.11.005

    Article  CAS  Google Scholar 

  14. D. Asmaa, A. Kadda, Z. Mostefa, B. Nadia, and E. Mohammed, “Etude de la structure moléculaire , la polarisabilité , l ’ hyper-polarisabilité et l ’ analyse HOMO-LUMO des structures monomères et,” Can J Phys, vol. September, pp. 1–28, 2018.

  15. Reshak AH, Kamarudin H, Auluck S (2012) Acentric nonlinear optical 2 , 4-dihydroxyl hydrazone isomorphic crystals with large linear , nonlinear optical susceptibilities and hyperpolarizability. J Phys Chem B 116:4677–4683

    Article  CAS  Google Scholar 

  16. Jensen L, Sylvester-Hvid KO, Mikkelsen KV, Åstrand PO (2003) A dipole interaction model for the molecular second hyperpolarizability. J Phys Chem A 107(13):2270–2276. https://doi.org/10.1021/jp026208j

    Article  CAS  Google Scholar 

  17. Yamijala SSRKC, Mukhopadhyay M, Pati SK (2015) Linear and nonlinear optical properties of graphene quantum dots. J Phys Chem C 119:12079–12087. https://doi.org/10.1021/acs.jpcc.5b03531

    Article  CAS  Google Scholar 

  18. Nya FT, Ejuh GW, Ndjaka JMB (2017) Theoretical study of optoelectronic and thermodynamic properties of Influence of hydroxyl position. Mater Lett 202:89–95. https://doi.org/10.1016/j.matlet.2017.05.064

    Article  CAS  Google Scholar 

  19. Stark MS (1997) Epoxidation of alkenes by peroxyl radicals in the gas phase: structure-activity relationships. J Phys Chem A 101(44):8296–8301. https://doi.org/10.1021/jp972054+

    Article  CAS  Google Scholar 

  20. Cornard J-P, Lapouge C (2006) Absorption spectra of caffeic acid, caffeate and their 1:1 complex with Al(III): density functional theory and time-dependent density functional theory investigations. J Phys Chem A 110(22):7159–7166. https://doi.org/10.1021/jp060147y

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen TP, Shim JH, Lee JY (2015) Density functional theory studies of hole mobility in picene and pentacene density functional theory studies of hole mobility in picene and pentacene crystals. J Phys Chem C 119:11301–11310. https://doi.org/10.1021/jp511484d

    Article  CAS  Google Scholar 

  22. Valeev EF, Coropceanu V, Da Silva Filho DA, Salman S, Brédas JL (2006) Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J Am Chem Soc 128(30):9882–9886. https://doi.org/10.1021/ja061827h

    Article  CAS  PubMed  Google Scholar 

  23. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  24. Landsberg PT (1981) Einstein and statistical thermodynamics. III. the diffusion-mobility relation in semiconductors. Eur J Phys 2(4):213–219. https://doi.org/10.1088/0143-0807/2/4/005

    Article  CAS  Google Scholar 

  25. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Accounts 108(3):134–142. https://doi.org/10.1007/s00214-002-0363-9

    Article  CAS  Google Scholar 

  26. Dennington JMR, Keith T (2016) GaussView, Version 6, Semichem Inc. Shawnee Mission KS

  27. Chen L, Xu C, Zhang X (2008) THEOCHEM DFT calculations of vibrational spectra and nonlinear optical properties for MgO nanotube clusters. J Mol Struct 863:55–59. https://doi.org/10.1016/j.theochem.2008.05.020

    Article  CAS  Google Scholar 

  28. Reznik D et al (2006) Electron – phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nat Publ Gr 440:1170–1173. https://doi.org/10.1038/nature04704

    Article  CAS  Google Scholar 

  29. Guo X et al (2015) Electron-phonon interactions in MoS2 probed with ultrafast two-dimensional visible / far-infrared spectroscopy Electron-phonon interactions in MoS 2 probed with ultrafast two-dimensional visible / far-infrared spectroscopy. J Chem Phys 142(212447):1–8. https://doi.org/10.1063/1.4921573

    Article  CAS  Google Scholar 

  30. Kabé C, Tchangnwa Nya F, Ejuh GW, Ndjaka JM (2020) Comparative study of optoelectronic, thermodynamic, linear and nonlinear optical properties of methyl phenalenyl doped to zinc and copper and their applications. J Mater Sci Mater Electron 31(10):7898–7904. https://doi.org/10.1007/s10854-020-03328-4

    Article  CAS  Google Scholar 

  31. Wolff JJ, Siegler F, Matschiner R, Wortmann R (2000) Optimized two-dimensional NLO chromophores with a threefold symmetry axis **. Angew Chem Int 39(8):1436–1439

    Article  CAS  Google Scholar 

  32. Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111(8):1554–1561. https://doi.org/10.1021/jp061633o

    Article  CAS  PubMed  Google Scholar 

  33. E. Scrocco and J. Tomasi, “Interpretation by means of electrostatic molecular potentials,” Adv Quantum Chem., vol. 115, 1979.

  34. Luque FJ, López JM, Orozco M (2000) Perspective on ‘electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor Chem Accounts 343, Berlin, Heidelberg: Springer Berlin Heidelberg:343–345

    Google Scholar 

  35. Zou LY, Ren AM, Feng JK, Liu YL, Ran XQ, Sun CC (2008) Theoretical study on photophysical properties of multifunctional electroluminescent molecules with different π -conjugated bridges. J Phys Chem A 112(47):12172–12178

    Article  CAS  Google Scholar 

  36. Cortés-Arriagada D, Sanhueza L, González I, Dreyse P, Toro-Labbé A (2016) About the electronic and photophysical properties of iridium(III)-pyrazino[2,3-f][1,10]-phenanthroline based complexes for use in electroluminescent devices. Phys Chem Chem Phys 18(2):726–734. https://doi.org/10.1039/C5CP05328E

    Article  CAS  PubMed  Google Scholar 

  37. Malagoli M, Brédas JL (2000) Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem Phys Lett 327(1–2):13–17. https://doi.org/10.1016/S0009-2614(00)00757-0

    Article  CAS  Google Scholar 

  38. Gruhn NE et al (2002) The vibrational reorganization energy in pentacene: molecular influences on charge transport. J Am Chem Soc 124(27):7918–7919. https://doi.org/10.1021/ja0175892

    Article  CAS  PubMed  Google Scholar 

  39. Bo CL, Cheng CP, You ZQ, Hsu CP (2005) Charge transport properties of tris(84-hydroxyquinolinato)aluminum(III): Why it is an electron transporter. J Am Chem Soc 127(1):66–67. https://doi.org/10.1021/ja045087t

    Article  CAS  Google Scholar 

  40. Yanase T et al (2018) Photoelectron spectroscopy of molecular anion of Alq3: an estimation of reorganization energy for electron transport in the bulk. ACS Omega 3(11):15200–15204. https://doi.org/10.1021/acsomega.8b02206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Sanyal, A. K. Manna, and S. K. Pati, “E ff ect of imide functionalization on the electronic , optical , and charge transport properties of coronene : a theoretical study,” 2013.

  42. Kepler RG et al (1995) Electron and hole mobility in tris (8-hydroxyquinolinolato-N1,O8) aluminum. Appl Phys Lett 66(26):3618–3620. https://doi.org/10.1063/1.113806

    Article  CAS  Google Scholar 

  43. Chai J (2012) Density functional theory with fractional orbital occupations. J Chem Phys 136:154104. https://doi.org/10.1063/1.3703894

    Article  CAS  PubMed  Google Scholar 

  44. Chai J (2017) Role of exact exchange in thermally-assisted-occupation density functional theory : A proposal of new hybrid schemes Role of exact exchange in thermally-assisted-occupation density functional theory : A proposal of new hybrid schemes. J Chem Phys 146:044102. https://doi.org/10.1063/1.4974163

    Article  CAS  PubMed  Google Scholar 

  45. Huang H, Seenithurai S, Chai J-D (2020) TAO-DFT study on the electronic properties of diamond-shaped graphene nanoflakes. Nanomaterials 10:1236. https://doi.org/10.3390/nano10061236

    Article  CAS  PubMed Central  Google Scholar 

  46. Das A, Müller T, Plasser F, Lischka H (2016) Polyradical character of triangular non-Kekulé structures, zethrenes, p -quinodimethane-linked bisphenalenyl, and the Clar Goblet in comparison: an extended multireference study. J Phys Chem A 120(9):1625–1636. https://doi.org/10.1021/acs.jpca.5b12393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. S. Seenithurai and J. Da Chai, “Effect of Li adsorption on the electronic and hydrogen storage properties of acenes: a dispersion-corrected TAO-DFT study,” Sci Rep, vol. 6, no. August, pp. 1–10, 2016, doi: https://doi.org/10.1038/srep33081.

  48. C. S. Wu, P. Y. Lee, and J. Da Chai, “Electronic properties of cyclacenes from TAO-DFT,” Sci Rep, vol. 6, no. July, pp. 1–9, 2016, doi: https://doi.org/10.1038/srep37249.

  49. C. N. Yeh and J. Da Chai, “Role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons: A TAO-DFT study,” Sci Rep, vol. 6, no. April, pp. 1–14, 2016, doi: https://doi.org/10.1038/srep30562.

  50. Chung JH, Da Chai J (2019) Electronic properties of Möbius cyclacenes studied by thermally-assisted-occupation density functional theory. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-39524-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Center for High Performance Computing (CHPC) in South Africa, for granting them access to their clusters and computational resources.

Funding

No funds or grants were received.

Author information

Authors and Affiliations

Authors

Contributions

Clovis Kabe: conceptualization; investigation; methodology; formal analysis; writing-original draft. Fridolin Tchangnwa Nya: conceptualization; investigation; methodology; writing-review and editing; supervision. Geh Wilson Ejuh: writing-review and editing. Alhadji Malloum: writing-review and editing. Jeanet Conradie: writing-review and editing. Jean Marie Ndjaka: writing-review and editing.

Corresponding author

Correspondence to Fridolin Tchangnwa Nya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All the co-authors consent to participate.

Consent to publish

All the co-authors consent to publish.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabé, C., Tchangnwa Nya, F., Ejuh, G.W. et al. Influence of zinc and copper on the electronic, linear, and nonlinear optical properties of organometallic complexes with phenalenyl radical: a computational study. Struct Chem 32, 835–845 (2021). https://doi.org/10.1007/s11224-020-01670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01670-1

Keywords

Navigation