Skip to main content

Advertisement

Log in

Comparative study of optoelectronic, thermodynamic, linear and nonlinear optical properties of methyl phenalenyl doped to zinc and copper and their applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we have determined the molecular structures of methyl phenalenyl doped to zinc and copper, their optoelectronic, thermodynamic, and linear and nonlinear optical (NLO) properties. We carried out a comparative study by using the density functional theory DFT/6-31++G**. The theoretical study of zinc methyl phenalenyl (ZMP) reveals an energy gap Egap of 3.54 eV, mean polarizability α0 of 207.42 a.u, first static hyperpolarizability β0 of 261.92 a.u, and free energy of Gibbs G of − 2469.099 Hartree. Moreover, substituting zinc by copper, the copper methyl phenalenyl (CuMP) proposed shows more interesting properties: its energy gap Egap (1.56 eV) exhibits good applications for electronic, thin films, and photonic devices and its high first static hyperpolarizability β0 (6678.75 a.u) makes the molecule to find applications in NLO devices comparatively to para-nitroaniline used as reference molecule. CuMP like ZMP can be used in memory storage devices due to free spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.L. Cui, B.C. Yang, X.M. Li, C. Cao, M.Q. Long, J. Appl. Phys. 116, 033701 (2014)

    Article  Google Scholar 

  2. P.R.L. Malenfant, C.D. Dimitrakopoulos, J.D. Gelorme, L.L. Kosbar, T.O. Graham, A. Curioni, W. Andreoni, Appl. Phys. Lett. 80, 2517 (2002)

    Article  CAS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  4. K.V. Raman, A.M. Kamerbeek, A. Mukherjee, N. Atodiresei, T.K. Sen, P. Lazic, V. Caciuc, R. Michel, D. Stalke, S.K. Mandal, S. Blügel, M. Münzenberg, J.S. Moodera, Nature 493, 509–513 (2013). https://doi.org/10.1038/nature11719

    Article  CAS  Google Scholar 

  5. J.S. Moodera, T.S. Santos, T. Nagahama, J. Phys. Condens. Matter 19, 165202 (2007)

    Article  Google Scholar 

  6. United States Patent No USOO8711600B2, 2(12):10, 2014.

  7. A. MAGRÍ, “Multifunctional Complexes for Molecular Devices”, These, 2014.

  8. C. Tan, Y. Zhou, C. Chen, J. Yu, K. Chen, Org. Electron. 28, 244–251 (2016)

    Article  CAS  Google Scholar 

  9. R. Dennington, T. Keith, J. Millam, GaussView, Version, 6 (Semichem Inc., Shawnee Mission KS, 2009)

    Google Scholar 

  10. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

  11. C. Dimitrakopoulos, P. Malenfant, Adv. Mater. 14(2), 99–117 (2002)

    Article  CAS  Google Scholar 

  12. S. Grimme, J. Antony, S. Ehrlich, H.J. Krieg, Chem. Phys. 132, 154104 (2010)

    Google Scholar 

  13. G. Horowitz, Organic Field-Effect Transistors. Adv. Mater. 10(5), 365–377 (1998)

    Article  CAS  Google Scholar 

  14. A.H. Reshak, RSC Adv. 4, 39565–39571 (2014)

    Article  CAS  Google Scholar 

  15. A.H. Reshak, RSC Adv. 4, 63137–63142 (2014)

    Article  CAS  Google Scholar 

  16. R. Cardia, G. Malloci, G.-M. Rignanese, X. Blase, E. Molteni, G. Cappellini, Electronic and optical properties of hexathiapentacene in the gas and crystal phases. Phys. Rev. B 93, 235132 (2016)

    Article  Google Scholar 

  17. Y. Tadjouteu Assatse, G.W. Ejuh, F. Tchoffo, J.M.B. Ndjaka, Chin. J. Phys. 58, 253–262 (2019). https://doi.org/10.1016/j.cplett.2019.136602

    Article  CAS  Google Scholar 

  18. L. Chen, C. Xu, X.-F. Zhang, J. Mol. Struct. (Thoechem) 863(1–3), 55–59 (2008). https://doi.org/10.1016/j.theochem.2008.05.020

    Article  CAS  Google Scholar 

  19. A. Kovacs, V. Izvekov, K. Zauer, K. Ohta, J. Phys. Chem. A 105, 5000 (2001)

    Article  CAS  Google Scholar 

  20. G.W. Ejuh, N. Samuel, T.N. Fridolin, N.J. Marie, Mater. Lett. 178, 221–226 (2016)

    Article  CAS  Google Scholar 

  21. C. Yuksetktepe, H. Saracoglu, N. Calytkan, Y. Yylmaz, Bull. Korean Chem. Soc. 31, 3553 (2010)

    Article  Google Scholar 

  22. S. Riahi, S. Eynollahi, S. Soleimani, M.R. Ganjali, P. Norouzi, H.M. Shiri, Int. J. Electrochem. Sci. 4, 1407 (2009)

    CAS  Google Scholar 

  23. R.R. Nair, W.C. Ren, R. Jali, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M.I. Katsnelson, H.M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, A.K. Geim, Fluorographene : a two dimensional counterpart of Teon (Astronomy and Manchester Centre for Mesoscience, Nanotechnology, University of Manchester, Manchester, School of Physics, 2013)

    Google Scholar 

  24. H. Alyar, Rev. Adv. Mater. Sci. 34, 79–87 (2013)

    CAS  Google Scholar 

  25. B. Champagne, M. Spassova, Chem. Phys. Lett. 471, 111–115 (2009)

    Article  CAS  Google Scholar 

  26. S.S. Yamijala, M. Mukhopadhyay, S.K. Pati, J. Phys. Chem. C 119(21), 12079–12087 (2015)

    Article  CAS  Google Scholar 

  27. G.W. Ejuh, F. Tchangnwa Nya, M.T. Ottou Abe, F. Fankam Jean-Basptiste, J.M.B. Ndjaka, Opt. Quant. Electron. 49(11), 382 (2017). https://doi.org/10.1007/s11082-017-1221-2

    Article  CAS  Google Scholar 

  28. Y.T. Assatse, G.W. Ejuh, R.A.Y. Kamsi, F. Tchoffo, J.M.B. Ndjaka, Chem. Phys. Lett. 731, 136602 (2019)

    Article  Google Scholar 

  29. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)

    Article  CAS  Google Scholar 

  30. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Rep. Prog. Phys. 70, 1633 (2007)

    Article  Google Scholar 

  31. A.K. Srivastava, S.K. Pandeyand, N. Misra, Chem. Phys. Lett. 691, 82–86 (2018)

    Article  CAS  Google Scholar 

  32. P.K. Nayak, N. Periasamy, Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using ‘ solvation’ model and DFT. Org. Electron. 10(7), 1396–1400 (2009)

    Article  CAS  Google Scholar 

  33. C. Zhan, J.A. Nichols, D.A. Dixon, Phys. Chem. A 107(20), 4184–4195 (2003)

    Article  CAS  Google Scholar 

  34. F. Tchangnwa Nya, G.W. Ejuh, J.M.B. Ndjaka, Mater. Lett. 202, 89–95 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Council of Scientific and Industrial Research (CSIR), India for the financial support through Emeritus Professor scheme (Grant No.21 (0582)/03/EMR-II) to Prof. A.N. Singh of the Physics Department, Bahamas Hindu University, India which enabled him to purchase the Gaussian Software. We are most grateful to Emeritus Prof. A.N. Singh for donating this software to Physics Department, Gombe State University, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fridolin Tchangnwa Nya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabé, C., Tchangnwa Nya, F., Ejuh, G.W. et al. Comparative study of optoelectronic, thermodynamic, linear and nonlinear optical properties of methyl phenalenyl doped to zinc and copper and their applications. J Mater Sci: Mater Electron 31, 7898–7904 (2020). https://doi.org/10.1007/s10854-020-03328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03328-4

Navigation