Skip to main content

Advertisement

Log in

Theoretical Investigation of Structural Effects on the Charge Transfer Properties in Modified Phthalocyanines

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

For efficient charge separation and charge transport in optoelectronic materials, small internal reorganization energies are desired. While many p-type organic semiconductors have been reported with low internal reorganization energies, few n-type materials with low reorganization energy are known. Metal phthalocyanines have long received extensive research attention in the field of organic device electronics due to their highly tunable electronic properties through modification of the molecular periphery. In this study, density functional theory (DFT) calculations are performed on a series of zinc-phthalocyanines (ZnPc) with various degrees of peripheral per-fluoroalkyl (-C3F7) modification. Introduction of the highly electron withdrawing groups on the periphery leads to a lowering in the energy of the molecular frontier orbitals as well as an increase in the electron affinity. Additionally, all molecules studies are found to be most stable in their anionic form, demonstrating their potential as n-type materials. However, the calculated internal reorganization energy slightly increases as a function of peripheral modification. By varying the degree of modification we develop a strategy for obtaining an optimal balance between low reorganization energy and high electron affinity for the development of novel n-type optoelectronic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venkataraman, D.; Yurt, S.; Venkatraman, B. H.; Gavvalapalli, J. Phys. Chem. Lett. 1, 6 (2010).

    Article  Google Scholar 

  2. Jiang, Y., et al., Journal of Materials Chemistry. 22, 10 (2012).

    Google Scholar 

  3. Shirota, Y.; Kageyama, H., Chem. Rev. 107, 4 (2008).

    Google Scholar 

  4. Zaumseil, J.; Sirringhaus, H., Chem. Rev. 107, 4 (2007).

    Article  Google Scholar 

  5. Bredas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 104, 11 (2004).

    Article  Google Scholar 

  6. Hummer, K.; Ambrosch-Draxl, C., Phys. Rev. B: Condens. Matter Mater. Phys. 72, 20 (2005)

    Article  Google Scholar 

  7. Zhou, Y., et al., J. Am. Chem. Soc. 129, 41 (2007).

    Google Scholar 

  8. de Boer, R. W. I.; Klapwijk, T. M.; Morpurgo, A. F., Applied Physics Letters 83, 21 (2003).

    Article  Google Scholar 

  9. Podzorov, V.; Pudalov, V. M.; Gershenson, M. E., Applied Physics Letters 82, 11 (2003).

    Article  Google Scholar 

  10. Mikolajczyk, M. M., et al., J. Mol. Model. 17, 11 (2011).

    Google Scholar 

  11. Nenon, S., et al., Thin Solid Films 518. 19 (2010).

    Article  Google Scholar 

  12. Zeis, R.; Siegrist, T.; Kloc, C., Applied Physics Letters 86, 2 (2005).

    Article  Google Scholar 

  13. Irfan, A., et al., Comput. Theor. Chem. 977, 1–3 (2011).

    Article  Google Scholar 

  14. Song, D., et al., Applied Physics Letters 92, 14 (2008).

    Google Scholar 

  15. Rajesh, K. R., et al., Bull. Mater. Sci. 37, 1 (2014).

    Article  Google Scholar 

  16. Bao, Z.; Lovinger, A. J.; Brown, J., J. Am. Chem. Soc. 120, 1 (1998).

    Article  Google Scholar 

  17. Yoon, S. M, et al. Chem. Comm. 46 (2010).

  18. Griswold, K.A. and Gorun, S.M., US Patent 20150266011

  19. Gorun, S.M.; Sullivan J.; and Ramji, K., US Patent 2015153888

  20. Moons, H., et al. Inorg. Chem. 49 (2010).

  21. Senevirathna, W.; Daddario, C. M.; Sauve, G., J. Phys. Chem. Lett. 5, 5 (2014).

    Article  Google Scholar 

  22. Lin, T., et al., Chem. Phys. 440, 47–52 (2014).

    Article  CAS  Google Scholar 

  23. Schmidt, et al. J. Comput. Chem. 14 (1993).

  24. Becke, A. D. J. Chem. Phys. 98 (1993).

  25. Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. J. Chem. Phys. 109 (1998)

  26. Dwyer, P. J., et al., Journal of Physical Chemistry A 118 (2014).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwyer, P.J., Kelty, S.P. Theoretical Investigation of Structural Effects on the Charge Transfer Properties in Modified Phthalocyanines. MRS Advances 1, 453–458 (2016). https://doi.org/10.1557/adv.2015.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2015.47

Navigation