Skip to main content
Log in

A DFT quest for effects of fused rings on the stability of remote N-heterocyclic carbenes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Assuming aromaticity (cyclic continuous conjugation, planarity, and obeying the Hückel 4n + 2 rule), effects of one and two fused six-membered heterocyclic rings are investigated on the energy lowering (stabilization) of 22 novel singlet (s) and triplet (t) carbenes, at B3LYP/AUG-cc-pVTZ and M06-2X/AUG-cc-pVTZ. Results display that (1) exclusive of triplet pyridine-4-ylidene, and s and t states, other species appear as ground state, so every s Hammick carbene exhibits more stability than its corresponding t state; (2) the highest stability is demonstrated by unsubstituted pyridine-4-ylidene as reference carbene, and the lowest stability is shown by carbene situated between two nitrogen heteroatoms of two fused rings, in a “W” arrangement; (3) regarding the relationship between carbenic center (CC) and substituted heteroatom, the order of stabilization for fused rings is meta > para > ortho; (4) regardless of how organized, fusion of one six-membered ring, in a given arrangement, has more stabilizing effect than two six-membered rings; (5) contrary to our expectation, t Hammick carbenes show higher band gap (ΔΕHOMO-LUMO) than their corresponding s species; (6) based on the NICS (nuclear independent chemical shift) results, the least stable carbene has the most aromaticity in its pyridine ring; and (7) according to proposed homomolecular isodesmotic reactions, all s states are stabilized via π-donor/σ-acceptor substitution more than the t states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 4

Similar content being viewed by others

References

  1. Danopoulos AA, Simler T, Braunstein P (2019) N-Heterocyclic carbene complexes of copper, nickel, and cobalt. Chem Rev 119(6):3730

    CAS  PubMed  Google Scholar 

  2. Smith CA, Narouz MR, Lummis PA, Singh I, Nazemi A, Li C-H, Crudden CM (2019) N-Heterocyclic carbenes in materials chemistry. Chem Rev 119(88):4986

    CAS  PubMed  Google Scholar 

  3. Melaimi M, Soleilhavoup M, Bertrand G (2010) Stable cyclic carbenes and related species beyond diaminocarbenes. Angew Chem Int Ed 49:8810

    CAS  Google Scholar 

  4. Buchner E, Curtius T (1885) Ueber die Einwirkung von Diazoessigäther auf aromatische Kohlenwasserstoffe. Ber Dtsch Chem Ges 8:2377

    Google Scholar 

  5. Igau A, Grützmacher H, Baceiredo A, Bertrand G (1988) Analogous .alpha.,.alpha.′-bis-carbenoid, triply bonded species: synthesis of a stable .lambda.3-phosphino carbene-.lambda.5-phosphaacetylene. J Am Chem Soc 110:6463

    CAS  Google Scholar 

  6. Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Stable Carbenes. Chem Rev 100:39

    CAS  PubMed  Google Scholar 

  7. Schaper L-A, Wei X, Altmann PJ, Öfele K, Pöthig A, Drees M, Mink J, Herdtweck E, Bechlars B, Herrmann WA, Kühn FE (2013) Synthesis and comparison of transition metal complexes of abnormal and normal tetrazolylidenes: a neglected ligand species. Inorg Chem 52:7031

    CAS  PubMed  Google Scholar 

  8. Schumacher M, Goldfuss B (2015) Quantifying N-heterocyclic carbenes as umpolung catalysts in the benzoin reaction: balance between nucleophilicity and electrophilicity. New J Chem 39:4508

    CAS  Google Scholar 

  9. Nelson DJ, Nolan SP (2013) Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem Soc Rev 42:6723

    CAS  PubMed  Google Scholar 

  10. Huynh HV, Frison G (2013) Electronic structural trends in divalent carbon compounds. J Org Chem 78:328

    CAS  PubMed  Google Scholar 

  11. Frison G, Huynh HV, Bernhammer JC (2013) Electronic structure trends in N-heterocyclic carbenes (NHCs) with varying number of nitrogen atoms and NHC—transition-metal bond properties. Chem Eur J 19:12892

    PubMed  Google Scholar 

  12. Rezaee N, Ahmadi A, Kassaee MZ (2016) Nucleophilicity of normal and abnormal N-heterocyclic carbenes at DFT: steric effects on tetrazole-5-ylidenes. RSC Adv 6:13224

    CAS  Google Scholar 

  13. Khorshidvand N, Kassaee MZ, Ahmadi AA, Cummings PT (2018) Steric effects on normal and abnormal acyclic, cyclic-saturated, and cyclic-unsaturated diaminocarbenes using DFT method. J Phys Org Chem 32:e3898

    Google Scholar 

  14. Schuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. Chem Rev 109:3445

    CAS  PubMed  Google Scholar 

  15. Han Y, Huynh HV (2007) Preparation and characterization of the first pyrazole-based remote N-heterocyclic carbene complexes of palladium(II). Chem Commun 10:1089

    Google Scholar 

  16. Schneider SK, Rentzsch CF, Krüger A, Raubenheimer HG, Herrmann WA (2007) Pyridin- and quinolinylidene nickel carbene complexes as effective catalysts for the Grignard cross-coupling reaction. J Mol Catal A Chem 265:50

  17. Schneider SK, Roembke P, Julius GR, Loschen C, Raubenheimer HG, Frenking G, Herrmann WA (2005) Extending the NHC concept: C–C coupling catalysis by a PdII carbene (r NHC) complex with remote heteroatoms. Eur J Inorg Chem 15:2973

  18. Schneider SK, Julius GR, Loschen C, Raubenheimer HG, Frenking G, Herrmann WA (2006) A first structural and theoretical comparison of pyridinylidene-type rNHC (remote N-heterocyclic carbene) and NHC complexes of Ni(II) obtained by oxidative substitution. Dalton Trans 9:1226

    Google Scholar 

  19. Chong DP (1997) Recent advances in density functional methods, parts I and II. World Scientific, Singapore.

  20. Barone V, Bencini A (1999) Recent advances in density functional methods, part III. World Scientific, Singapore

  21. Adamo C, Matteo A d, Barone V (2000) From classical density functionals to adiabatic connection methods. The state of the art. Adv Quantum Chem 36:45

    Google Scholar 

  22. Ess DH, Houk KN (2005) Activation Energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions. J Phys Chem A 109:9542

    CAS  PubMed  Google Scholar 

  23. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    CAS  Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    CAS  Google Scholar 

  25. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040

    CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    CAS  Google Scholar 

  27. Krishna R, Frisch MJ, Pople JA (1980) Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J Chem Phys 72:4244

    Google Scholar 

  28. Torkpoor I, Janjanpour MHN, Salehi N, Gharibzadeh F, Edjlali E, (2018) Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study. Chem Rev Lett, 1:2-8

  29. Sarvestani MRJ, Majedi S (2020) A DFT study on the interaction of alprazolam with fullerene (C20) J Chem Lett, 1:32-38

  30. Gharibzadeh F, Gohari S, Nejati K, B. Hashemzadeh B, Mohammadiyan S (2018) The Be atom doping: An effective way to improve the Li-atom adsorptionin boron rich nanoflake of B24. Chem Rev Lett 1:16-22

  31. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215

    CAS  Google Scholar 

  32. Rostamoghli R, Vakili M, Banaei A, Pourbashir E, Jalalierad K (2018) Applying the B12N12 nanoparticle as a sensor for CO, CO2, H2O and NH3 gasses. Chem Rev Lett 1:31-36

  33. Majedi S, Behmagham F, Vakili M (2020) Theoretical view on interaction between boron nitride nanostructures and some drugs. J Chem Lett, 1:19-24

  34. Janjanpour MHN, VakiliM, Daneshmehr S, Jalalierad K, Alipour F (2018) Study of the ionization potential, electron affinity and HOMO-LUMO gaps in the small fullerene nanostructures. Chem Rev Lett 1:45-49

  35. Moladoust R. (2019) Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chem Rev Lett 2:151-156

  36. Koohi M, Bastami H (2020) Structure, stability, MEP, NICS, reactivity, and NBO of Si–Ge nanocages evolved from C20 fullerene at DFT. Monatsh Chem 151:693

    CAS  Google Scholar 

  37. Koohi M, Bastami H (2020) Substituent effects on stability, MEP, NBO analysis, and reactivity of 2,2,9,9-tetrahalosilacyclonona-3,5,7-trienylidenes, at density functional theory. Monatsh Chem 151:11

    CAS  Google Scholar 

  38. Koohi M, Bastami H (2020) A density functional theory perspective on 2,2,9,9-tetrahalostannacyclonona-3,5,7-trienylidenes. J Phys Org Chem 33:e4031

    Google Scholar 

  39. Koohi M, Bastami H (2020) A quest for stable 2,2,9,9-tetrahaloplumbacyclonona-3,5,7-trienylidenes at density functional theory. Struct Chem 31:877

    CAS  Google Scholar 

  40. Koohi M (2020) Estimating the stability and reactivity of cyclic tetrahalo substituted germylenes: a density functional theory investigation. J Phys Org Chem 33:e4032

    CAS  Google Scholar 

  41. Vessally E, Nikoorazm M, Esmaili F, Fereyduni E (2011) Substitution effects at α-position of divalent five-membered ring XC4H3M (M = C, Si and Ge). J Organomet Chem 696:932

    CAS  Google Scholar 

  42. Vessally E, Edjlali L, Shabrendi H, Rezaei M (2012) Electronic states of XC3H3Si five-membered rings (X = CH, N, P, and As). Russ J Phys Chem 86:595

    CAS  Google Scholar 

  43. Kassaee MZ, Koohi M (2013) Breathing viability into cyclonona-3,5,7-trienylidenes via α-dimethyl and ά-moieties at DFT. J Phys Org Chem 26:540

    CAS  Google Scholar 

  44. Kassaee MZ, Koohi M, Mohammadi R, Ghavami M (2013) 2,2,9,9-Tetramethylcyclonona-3,5,7-trienylidene vs. its heterocyclic analogues: a quest for stable carbenes at DFT. J Phys Org Chem 26:908

    CAS  Google Scholar 

  45. Koohi M, Kassaee MZ, Haerizade BN, Ghavami M, Ashenagar S (2015) Substituent effects on cyclonona-3,5,7-trienylidenes: a quest for stable carbenes at density functional theory level. J Phys Org Chem 28:514

    CAS  Google Scholar 

  46. Koohi M (2019) Cyclonona-3,5,7-trienylidene and its Si, Ge, Sn, and Pb analogs versus their α-halogenated derivatives at B3LYP and MP2 methods. J Phys Org Chem 32:e4013

    CAS  Google Scholar 

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347

    CAS  Google Scholar 

  48. Sobolewski AL, Domcke W (2002) Ab initio investigation of the structure and spectroscopy of hydronium−water clusters. J Phys Chem A 106:4158

    CAS  Google Scholar 

  49. Hariharan PC, Pople JA (1974) Accuracy of AH, equilibrium geometries by single determinant molecular orbital theory. J Mod Phys 27:209

    CAS  Google Scholar 

  50. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-Consistent Molecular Orbital Methods. XXIII. A polarization-type basis set for second row elements. J Chem Phys 77:3654

    CAS  Google Scholar 

  51. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25: supplementary functions for Gaussian basis sets. J Chem Phys 80:3265

    CAS  Google Scholar 

  52. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G set for first-row elements, Li-F. J Comput Chem 4:294

    CAS  Google Scholar 

  53. Kendall RA, Dunning Jr TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796

    CAS  Google Scholar 

  54. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  55. Weinhold F, Glendening ED, NBO 7.0 Program manual natural bond orbital analysis programs

  56. Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33:2363

    CAS  PubMed  Google Scholar 

  57. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci 2:1

    CAS  Google Scholar 

  58. Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111:1554

    CAS  PubMed  Google Scholar 

  59. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts (NICS): a simple and efficient aromaticity probe. J Am Chem Soc 118:6317

    CAS  PubMed  Google Scholar 

  60. Schleyer PR, Jiao H, van Eikema Hommes NJR, Malkin VG, Malkina OL (1997) An evolution of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669

    CAS  Google Scholar 

  61. Schleyer PVR, Manoharan M, Wang Z, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJR (2001) Dissected nucleus-independent chemical shift analysis of p-aromaticity and antiaromaticity. Org Lett 3(16):2465

    CAS  PubMed  Google Scholar 

  62. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615

    CAS  PubMed  Google Scholar 

  63. Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922

    CAS  Google Scholar 

  64. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512

    CAS  Google Scholar 

  65. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  66. Hoffmann R, Schleyer PR, Schaefer HF (2008) Predicting moleculesdmore realism, Please! Angew Chem Int Ed Eng 47:7164

    Google Scholar 

  67. Joule JA, Mills K (2010) Heterocyclic Chemistry5th edn. Blackwell Publishing, Chichester

    Google Scholar 

  68. Alam MJ, Ahmad S (2014) Molecular structure, anharmonic vibrational analysis and electronic spectra of o-, m-, p-iodonitrobenzene using DFT calculations. J Mol Struct 1059:239

    CAS  Google Scholar 

  69. Koohi M, Bastami H (2020) Substituted Hammick carbenes: the effects of fused rings and hetero atoms through DFT calculations. J Phys Org Chem 33:e4023

    CAS  Google Scholar 

  70. Boehme C, Frenking G (1996) Electronic structure of stable carbenes, silylenes, and germylenes. J Am Chem Soc 118:2039

    CAS  Google Scholar 

  71. Jursic BS (1999) Hybrid density functional theory study of low reactivity of imidazol-2-ylidine toward insertion and addition reactions. J Chem Soc, Perkin Trans 2 8:1805

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheida Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14331 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhad, P.D.K., Youseftabar-Miri, L., Ahmadi, S. et al. A DFT quest for effects of fused rings on the stability of remote N-heterocyclic carbenes. Struct Chem 32, 787–798 (2021). https://doi.org/10.1007/s11224-020-01650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01650-5

Keywords

Navigation