Skip to main content

Advertisement

Log in

Interaction studies of volatiles from jackfruit on α-phosphorene nanosheet—a DFT outlook

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The present report brings out the interaction between the black phospherene nanosheet and volatile organic compounds (VOCs) originating from jackfruit using the first-principles calculation. Using the cohesive formation energy, the stable nature of the phospherene nanosheet is confirmed. The energy band structure provides the insights on the electronic properties of phospherene nanosheet and the energy gap is detected to be 0.59 eV, showing semiconductor nature. Besides, present results reveal the interaction of VOC compounds emitted from jackfruit (during various ripening stages). The adsorption of VOCs on phospherene nanosheet is in the following order isopentyl isovalerate > butyl isovalerate > isopentyl acetate > butyl acetate. The adsorption energy including energy gap, Bader charge transfer, and average energy gap variation clearly signifies the adsorption property of VOC compounds from jackfruit on phospherene nanosheet, which serves as the fingerprint to estimate the jackfruit freshness. Also, by using energy band structure, electron density, and density of states (DOS) maps, the adsorption property of VOC compounds have been explored. The result suggests that phospherene sheets can be used as a sensing material to estimate the quality of jackfruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ling X, Wang H, Huang S et al (2015) The renaissance of black phosphorus. Proc Natl cad Sci 112:4523–4530

    Article  CAS  Google Scholar 

  2. Hultgren R, Gingrich NS, Warren BE (1935) The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J Chem Phys 3:351–355

    Article  CAS  Google Scholar 

  3. Appalakondaiah S, Vaitheeswaran G, Lebègue S et al (2012) Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys Rev B - Condens Matter Mater Phys 86:1–9

    Article  Google Scholar 

  4. Pang J, Bachmatiuk A, Yin Y et al (2018) Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv Energy Mater 8:1–43

    Google Scholar 

  5. Akhtar M, Anderson G, Zhao R, et al (2017) Recent advances in synthesis, properties, and applications of phosphorene npj 2D Mater Appl 1:5

  6. Lu Y-L, Dong S, Zhou W et al (2018) Hittorf’s violet phosphorene as a promising candidate for optoelectronic and photocatalytic applications: first-principles characterization. Phys Chem Chem Phys 20:11967–11975

    Article  CAS  Google Scholar 

  7. Rahman AKMM, Huq E, Mian AJ, Chesson A (1995) Microscopic and chemical changes occurring during the ripening of two forms of jackfruit (Artocarpus heterophyllus L). Food Chem 52:405–410

    Article  CAS  Google Scholar 

  8. Chowdhury FA, Azizur Raman M, Jabbar Mian A (1997) Distribution of free sugars and fatty acids in jackfruit (Artocarpus heterophyllus). Food Chem 60:25–28

    Article  CAS  Google Scholar 

  9. Azizur Rahman M, Nahar N, Jabbar Mian A, Mosihuzzaman M (1999) Variation of carbohydrate composition of two forms of fruit from jack tree (Artocarpus heterophyllus L.) with maturity and climatic conditions. Food Chem 65:91–97

    Article  Google Scholar 

  10. Jagadeesh SL, Reddy BS, Swamy GSK et al (2007) Chemical composition of jackfruit (Artocarpus heterophyllus Lam.) selections of Western Ghats of India. Food Chem 102:361–365

    Article  CAS  Google Scholar 

  11. El Hadi MAM, Zhang FJ, Wu FF et al (2013) Advances in fruit aroma volatile research. Molecules 18:8200–8229

    Article  Google Scholar 

  12. Bhuvaneswari R, Chandiramouli R (2019) First-principles investigation on detection of phosgene gas molecules using phosphorene nanosheet device. Chem Phys Lett 717:99–106

    Article  CAS  Google Scholar 

  13. Nagarajan V, Chandiramouli R (2019) Probing cyanogen chloride gas molecules using blue phosphorene nanosheets based on adsorption properties: a first-principles study. Comput Theor Chem 1150:63–70

    Article  CAS  Google Scholar 

  14. Srimathi U, Nagarajan V, Chandiramouli R (2018) Adsorption studies of volatile organic compounds on germanene nanotube emitted from banana fruit for quality assessment–a density functional application. J Mol Graph Model 82:129–136

    Article  CAS  Google Scholar 

  15. Nagarajan V, Chandiramouli R (2018) Interaction of volatile organic compounds (VOCs) emitted from banana on stanene nanosheet—a first-principles studies. Struct Chem 29:1321–1332

    Article  CAS  Google Scholar 

  16. Soler M, Artacho E, Gale JD et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14:2745

    CAS  Google Scholar 

  17. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  19. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  20. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2020) Toxicants in cigarette smoke adsorbed on red phosphorene nanosheet: a first-principles insight. Chem Phys 530:110604

    Article  Google Scholar 

  21. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  22. Beheshtian J, Baei MT, Bagheri Z, Ahmadi A (2012) AlN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectron J 43:452–455

    Article  CAS  Google Scholar 

  23. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Arsenene nanoribbons for sensing NH3 and PH3 gas molecules–a first-principles perspective. Appl Surf Sci 469:173–180

    Article  CAS  Google Scholar 

  24. Princy Maria J, Bhuvaneswari R, Nagarajan V, Chandiramouli R (2020) Exploring adsorption behavior of ethylene dichloride and dibromide vapors on blue phosphorene nanosheets: a first-principles acumens. J Mol Graph Model 95:107505

    Article  Google Scholar 

  25. Yang S, Wang Z, Dai X, Xiao J, Long M, Chen T (2019) First-principles study of gas molecule adsorption on C-doped zigzag phosphorene nanoribbons. Coatings 9:763

    Article  CAS  Google Scholar 

  26. Johna D, Chatanathodi R (2019) Hydrogen adsorption on alkali metal decorated blue phosphorene nanosheets. Appl Surf Sci 465:440–449

    Article  Google Scholar 

  27. Ong BT, Nazimah SAH, Tan CP et al (2008) Analysis of volatile compounds in five jackfruit ( Artocarpus heterophyllus L.) cultivars using solid-phase microextraction (SPME) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). J Food Compos Anal 21:416–422

    Article  CAS  Google Scholar 

  28. Rasmussen P (1983) Identification of volatile components of jackfruit by gas chromatography/mass spectrometry with two different columns. Anal Chem 55:1331–1335

    Article  CAS  Google Scholar 

  29. Kobko N, Dannenberg JJ (2001) Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states. J Phys Chem A 10:1944–1950

    Article  Google Scholar 

  30. Mukhopadhyay S, Gowtham S, Scheicher RH (2010) Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology 21:165703

    Article  Google Scholar 

  31. Rad AS, Abedini E (2016) Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study. Appl Surf Sci 360:1041–1046

    Article  CAS  Google Scholar 

  32. Shokuhi A, Ayub K (2016) Detailed surface study of adsorbed nickel on Al12N12 nano-cage. Thin Solid Films 612:179–185

    Article  Google Scholar 

  33. Hernández E, Bertin V, Soto J, Miralrio A, Castro M (2018) Catalytic reduction of nitrous oxide by the low-symmetry Pt8 cluster. J Phys Chem A 122:2209–2220

    Article  Google Scholar 

  34. Beheshtian J, Ahmadi A, Noei M (2013) Sensors and actuators B: chemical sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors Actuators B Chem 181:829–834

    Article  CAS  Google Scholar 

  35. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2020) Explosive vapor detection using novel graphdiyne nanoribbons—a first-principles investigation. Struct Chem. https://doi.org/10.1007/s11224-019-01456-0

  36. Ullah Z, Rauf A, Tariq M et al (2015) Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases. Spectrochim Acta Part A Mol Biomol Spectrosc 141:71–79

    Article  Google Scholar 

  37. Kaloni TP (2014) Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. J Phys Chem C 118:25200–25208

    Article  CAS  Google Scholar 

  38. Nagarajan V, Chandiramouli R (2018) Investigation on probing explosive nitroaromatic compound vapors using graphyne nanosheet: a first-principle study. Struct Chem 30:657–667

    Article  Google Scholar 

  39. Nagarajan V, Chandiramouli R (2020) N-nitrosodimethylamine interaction studies on gamma phosphorene sheets emitted from rubber fumes–a first-principles study. Phys B 577:411808

    Article  CAS  Google Scholar 

  40. Yoosefian M, Pakpour A, Etminan N (2018) Nanofilter platform based on functionalized carbon nanotubes for adsorption and elimination of Acrolein, a toxicant in cigarette smoke. Appl Surf Sci 444:598–603

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from Nano Mission Council (No. SR/NM/NS-1011/2017(G)) Department of Science & Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Bhavadharani, R.K. & Chandiramouli, R. Interaction studies of volatiles from jackfruit on α-phosphorene nanosheet—a DFT outlook. Struct Chem 31, 1851–1860 (2020). https://doi.org/10.1007/s11224-020-01541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01541-9

Keywords

Navigation