Skip to main content
Log in

DFT and TDDFT study of chemical reactivity and spectroscopic properties of M(TePh)2 [TMEDA] M=Zn, Cd, and Hg complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A series of complexes of the type M(TePh)2 [TMEDA], where M = Zn, Cd, or Hg and TMEDA: N, N′, N′-tetra methyl ethylene diamine, have been investigated by the means of density functional theory (DFT) and time-dependent density functional theory (TDDFT) with LANL2DZ basis set. The geometric parameters, related energies, spectroscopic properties, namely, infrared and UV–visible spectra, and reactivity descriptors of these complexes were computed. The calculated values of the structural parameters show a good agreement with the available experimental data. The calculation of the reactivity descriptors confirm that the complex Zn (TePh)2 [TMEDA] is the most active biologically. The latter is of potential medical importance, mainly due to the presence of zinc, which is required for proper functioning of human biological systems. The frequencies of metal-Te, in the infrared spectra, are in the terahertz region, which find applications in multitude of areas in science and engineering, ranging from imaging tissue in medicine to security systems. The wavelengths, in the UV–visible spectra, are in near ultraviolet and visible regions. Three types of charge transfer are distinguished: intra-ligands, metal–ligand, and ligand–metal charge transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miyamoto D, Tang Z, Takarada T, Maeda M (2007). R Soc Chem:S1–S3

  2. Zhu S, Xing C, Xu W, Jin G, Li Z (2004). Cryst Growth Des 4:53

    CAS  Google Scholar 

  3. Dilworth JR, Hu J (1993). Adv Inorg Chem 40:411

    Google Scholar 

  4. Luo J, Zhou XG, Weng LH, Hou XF (2003). Acta Crystallography Sect C 59:m519

    Google Scholar 

  5. Molina MB, Ortega SH, Toscano RA, Martínez JV, Morales DM (2010). Inorg Chim Acta 363:1222–1229

    Google Scholar 

  6. Singh S, Saini D, Mehta SK, Lazarte DC (2013). Chemistry 43:283–288

    CAS  Google Scholar 

  7. Khadka CB, Eichhöfer A, Weigend F, Corrigan JF (2012). Inorg Chem 51:2747–2756

    CAS  PubMed  Google Scholar 

  8. Mntungwa N, Srirama V, Pullabhotla R, Revaprasadu N (2012). Mater Lett 81:108–111

    CAS  Google Scholar 

  9. Jun Y, Choi C, Cheon J (2001). Chem Commun:101–102

  10. McCall KA, Huang C, Fierke CA (2000). J Nutr 130:1437S–1446S

    CAS  PubMed  Google Scholar 

  11. Mocchegiani E, Muzzioli M, Giacconi R (2000). Trends Pharmacol Sci 21:205–208

    CAS  PubMed  Google Scholar 

  12. Uda NR, Upert G, Angelici G, Nicolet S, Schmidt T, Schwedeb T, Creus M (2014). Metallomics 6:88

    CAS  PubMed  Google Scholar 

  13. Zhao L, Yosef M, Steinhart M, Gӧring P, Hofmeister H, Gӧsele U, Schlecht S (2006). Angewandte Chemie international Ed 45:311

    CAS  Google Scholar 

  14. Zhang B, Guo F, Wang W (2012). J Nanomater:293041

  15. Stuczynski SM, Brennan JG, Steigerwald ML (1989). Inorg Chem 28:4431

    CAS  Google Scholar 

  16. Chivers T, Eisler DJ, Ritch JS (2005). R Soc Chem:2675–2677

  17. Kang YB (2010). J Alloys Compd 505:483–485

    CAS  Google Scholar 

  18. Stieler R, Bublitz F, Schulz Lang E, Manzoni de Oliveira G (2012). Polyhedron 35:137–141

    CAS  Google Scholar 

  19. Lang ES, Tirloni B, Manzoni de Oliveira G, Pereira MB (2013). J Organomet Chem 724:135–138

    Google Scholar 

  20. Dharmadasa M, Bingham PA, Echendu OK, Salim HI, Druffel T, Dharmadasa R, Sumanasekera GU, Dharmasena RR, Dergacheva MB, Mit KA, Urazov KA, Bowen L, Walls M, Abbas A (2014). Coatings:4380–4415

  21. Eichhöfer A, Deglmann P (2004). Eur J Inorg Chem:349–355

  22. Omskii I, Bazhenov NL, Mynbaeva KD, Smirnov VA, Varavin VS, Mikhailov N, Sidorov N, Yu G (2009). Physica B 404:5035–5037

    Google Scholar 

  23. Lun Kao S, Wu SP (2015). Sensors Actuators B 212:382–388

    Google Scholar 

  24. Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF (2007). Int J Occup Environ Health 13:202

    CAS  PubMed  Google Scholar 

  25. Hiatt V, Huff J (1975). Int J Environ Stud 7:277

    CAS  Google Scholar 

  26. Nolan EM, Lippard SJ (2008). Chem Rev 108:3443–3480

    CAS  PubMed  Google Scholar 

  27. Kim HN, Ren WX, Kim JS, Yoon J (2012). Chem Soc Rev 41:3210–3244

    CAS  PubMed  Google Scholar 

  28. Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120:215–241

    CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988). Phys Rev B 37(2):785–789

    CAS  Google Scholar 

  30. Jamróz MH (2004) VEDA 4 Program, Warsaw

  31. Bauernschmitt R, Ahlrichs R (1996). Chem Phys Lett 256:454

    CAS  Google Scholar 

  32. Stratmann RE, Scuseria GE, Frisch MJ (1998). J Chem Phys 109:8218

    CAS  Google Scholar 

  33. Casida ME, Jamorski C, Casida KC, Salahub DR (1998). J Chem Phys 108:4439

    CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    CAS  PubMed  Google Scholar 

  35. Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51

    CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985). J Chem Phys 82:270

    CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian 09, Revision C.01, (2010) Gaussian Inc, Wallingford

  38. GaussView, Version 4.1, Dennington RI, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R, Semichem, Inc. (2003) Shawnee Mission, KS

  39. Allouche AR, Gabedit (2011). J Comput Chem 32:174–182

    CAS  PubMed  Google Scholar 

  40. Bochmann M, Webb KJ (1991). Dalton Trans 9:2325–2329

    Google Scholar 

  41. Kürkçüoglu GS, Sayın E, Şahin O (2015). J Mol Struct 1101:82–90

    Google Scholar 

  42. Deepanwita G, Sabyasachi B, Abhijit KD (2012). Mol Phys 110(1):37–48. https://doi.org/10.1080/00268976.2011.631506

    Article  CAS  Google Scholar 

  43. Auld DS (2001). BioMetals 14:271–313

    CAS  PubMed  Google Scholar 

  44. Auld DS (2009). BioMetals 22:141–148

    CAS  PubMed  Google Scholar 

  45. Chaoui A, El Ferjani E (2005). Comptes Rendus Biologies 328:23–31

    CAS  PubMed  Google Scholar 

  46. Abou-Husseina AA, Linert W (2014). Spectrochim Acta A Mol Biomol Spectrosc 117:763–771

    Google Scholar 

  47. Dhir K, Kaur H, Puri JK, Mittu B (2014). J Organomet Chem. https://doi.org/10.1016/j.jorganchem.2013.12.020

  48. Ozbek, N, Alyar S, Alyar H, Ahin ES, Karacan N (2013) Spectrochim Acta A Mol Biomol Spectrosc 108:123–132

  49. Sayin K, Kariper SE, Sayin TA, Karakas D (2014). Spectrochim Acta A Mol Biomol Spectrosc 133:348–356

    CAS  PubMed  Google Scholar 

  50. Tidjani-Rahmouni N, Bensiradj NH, Djebbar S, Benali-Baitich O (2014). J Mol Struct:254–263

  51. Mansour A (2013). Inorg Chim Acta 394:436–445

    CAS  Google Scholar 

  52. Schnodt J, Sieger M, Schleid T, Hartenbach I, Kaim W, Anorg Z (2010). Z Anorg Allg Chem 636:385–388

    Google Scholar 

  53. Liu YC, Chen ZF, Liu LM, Peng Y, Hong X, Yang B, Liu HG, Liang H, Orvigd C (2009). Dalton Trans 48:10813–10823

    Google Scholar 

  54. Guo Q, Kume Y, Fukuhara Y, Tanaka T, Nishio M, Ogawa H, Hiratsuka M, Tani M, Hangyo M (2007). State Communications 141:188–191

    CAS  Google Scholar 

  55. Socrates G (2004). Wiley ISBN 978-0-470-09307-8.pp18

Download references

Acknowledgments

The authors thank the Instituto de Estructura de la Materia, IEM–CSIC, Serrano, Madrid (Spain) for making the calculation software available. We would particularly thank Dr. Vicente Timon, Department of Physics, CSIC, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafila Zouaghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Structural parameters of complexes M(TePh)2 [TMEDA]

• Biological activity of complexes (calculation of reactivity descriptors)

• IR spectra (VEDA 4 for attribution of frequencies)

• UV–visible spectra (transfer charge)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensiradj, N.E.H., Dekhira, A., Zouaghi, N. et al. DFT and TDDFT study of chemical reactivity and spectroscopic properties of M(TePh)2 [TMEDA] M=Zn, Cd, and Hg complexes. Struct Chem 31, 1493–1503 (2020). https://doi.org/10.1007/s11224-020-01509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01509-9

Keywords

Navigation