Skip to main content
Log in

Exploring fundamental differences between red- and blue-shifted intramolecular hydrogen bonds using FAMSEC, FALDI, IQA and QTAIM

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We have discovered, using developed by us recently FALDI and FAMSEC computational techniques, fundamentally distinct mechanisms of intramolecular red- and blue-shifted H-bond formation that occurred in different conformers of the same molecule (amino-acid β-alanine) involving the same heteroatoms (O–H⋅⋅⋅N and N–H⋅⋅⋅O). Quantitative topological, geometric and energetic data of both H-bonds obtained with well-known QTAIM and IQA methodologies agree with what is known regarding H-bonding in general. However, the FALDI charge and decomposition scheme for calculating in real space 3D conformational deformation densities provided clear evidence that the process of electron density redistribution taking place on the formation of the stronger red-shifted H-bond is fundamentally distinct from the weaker blue-shifted H-bond. Contributions made by atoms of the X–H⋅⋅⋅Y–Z fragment (IUPAC notation) as well as distinct atoms on the H-bond formation were fully explored. The FAMSEC energy decomposition approach showed that the atoms involved in formation of the red-shifted H-bond interact in a fundamentally different fashion, both locally and with the remainder of the molecule, as compared with those of the blue-shifted H-bond. Excellent correlations of trends obtained with QTAIM, IQA, FAMSEC and FALDI techniques were obtained. Commentary regarding IUPAC recommended definition of an H-bond and validity of observed AILs (or bond paths) of the two H-bond kinds is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The IUPAC recommendation to depict classical (intra- and intermoleculear) H-bonding is symbolically represented as a series of four chemically–bonded atoms X–H···Y–Z

  2. LEC is also the lowest energy conformer (global energy minimum structure) of β–alanine (MP2 level).

  3. vdW radii taken as H = 1.20 Å, N = 1.55 Å and O = 1.52 Å [74].

References

  1. Coppola GM, Schuster HF (1987) In asymmetric synthesis: construction of chiral molecules using amino acids. Wiley, New York

    Google Scholar 

  2. Blaskovich MA (2010) In handbook on syntheses of amino acids: general routes for the syntheses of amino acids, 1st edn. New York, Oxford University Press

    Google Scholar 

  3. Waingeh VF, Ngassa FN, Song J (2015) Open J Phys Chem 5:122–131

    Article  CAS  Google Scholar 

  4. Eugenia Sanz M, Lesarri A, Isabel Peña M, Vaquero V, Cortijo V, López JC, Alonso JL (2006) J Am Chem Soc 128:3812–3817

    Article  Google Scholar 

  5. Abirami S, Xing YM, Tsang CW, Ma NL (2005) J Phys Chem A 109:500–506

    Article  CAS  Google Scholar 

  6. Piekarski DG, Díaz-Tendero S (2017) Phys Chem Chem Phys 19:5465–5476

    Article  CAS  Google Scholar 

  7. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  8. Pinchas S (1955) Anal Chem 27:2–6

    Article  CAS  Google Scholar 

  9. Schneider WG, Bernstein HJ (1956) Trans Faraday Soc 52:13–18

    Article  CAS  Google Scholar 

  10. Hobza P, Spirko V, Selzle HL, Schlag EWJ (1998) Phys Chem A 102:2501–2504

    Article  CAS  Google Scholar 

  11. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  12. Caminati W, Melandri S, Moreschini P, Favero PG (1999) Angew Chem Int Ed 38:2924–2925

    Article  CAS  Google Scholar 

  13. Hobza P, Havlas Z (1999) Chem Phys Lett 303:447–452

    Article  CAS  Google Scholar 

  14. Jemmis ED, Giju KT, Sundararajan K, Sankaran K, Vidya V, Viswanathan KS, Leszczynski JJ (1999) Mol Struct 510:59–68

    Article  CAS  Google Scholar 

  15. Jemmis ED, Subramanian G, Nowek A, Gora RW, Sullivan RH, Leszczynski JJ (2000) Mol Struct 556:315–320

    Article  CAS  Google Scholar 

  16. van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza PJ (2001) Am Chem Soc 123:12290–12293

    Article  Google Scholar 

  17. Delanoye SN, Herrebout WA, van der Veken BJ (2002) J Am Chem Soc 124:7490–7498

    Article  CAS  Google Scholar 

  18. Hobza P, Havlas Z (2002) Theor Chem Accounts 108:325–334

    Article  CAS  Google Scholar 

  19. Delanoye SN, Herrebout WA, van der Veken BJ (2002) J Am Chem Soc 124:11854–11855

    Article  CAS  Google Scholar 

  20. Matsuura H, Yoshida H, Hieda M, Yamanaka S, Harada T, Shinya K, Ohno K (2003) J Am Chem Soc 125:13910–13911

    Article  CAS  Google Scholar 

  21. Alonso JL, Antolinez S, Blanco S, Lesarri A, Lopez JC, Caminati W (2004) J Am Chem Soc 126:3244–3249

    Article  CAS  Google Scholar 

  22. Diana E, Stanghellini PL (2004) J Am Chem Soc 126:7418–7419

    Article  CAS  Google Scholar 

  23. Barnes AJ (2004) J Mol Struct 704:3–9

    Article  CAS  Google Scholar 

  24. Castellano RK (2004) Curr Org Chem 8:845–865

    Article  CAS  Google Scholar 

  25. Kryachko ES (2006) In: Grabowski SJ (ed) Hydrogen bonding - new insights. Springer, Dordrecht Chapter 8

    Google Scholar 

  26. Nishio M, Hirota M, Umezawa Y (1998) In the CH/interaction. Evidence, nature, and consequences. Wiley-VCH, New York

    Google Scholar 

  27. Buděšínský M, Fiedler P, Arnold Z (1989) Synthesis 11:858–860

    Article  Google Scholar 

  28. Boldeskul IE, Tsymbal IF, Ryltsev EV, Latajka Z, Barnes AJ (1997) J Mol Struct 436−437:167–171

    Article  Google Scholar 

  29. Hobza P, Špirko V, Havlas Z, Buchhold K, Reimann B, Barth HD, Brutschy B (1999) Chem Phys Lett 299:180–186

    Article  CAS  Google Scholar 

  30. Reimann B, Buchhold K, Vaupel S, Brutschy B, Havlas Z, Spirko V, Hobza P (2001) J Phys Chem A 105:5560–5566

    Article  CAS  Google Scholar 

  31. Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411–9422

    Article  CAS  Google Scholar 

  32. Karger N, Amorim da Costa AM, Ribeiro-Claro PJA (1999) J Phys Chem A 103:8672–8677

    Article  CAS  Google Scholar 

  33. Zierkiewicz W, Michalska D, Havlas Z, Hobza P (2002) ChemPhysChem 3:511–518

    Article  CAS  Google Scholar 

  34. Wojtulewski S, Grabowski SJ (2005) Chem Phys 309:183–188

    Article  CAS  Google Scholar 

  35. Joseph J, Jemmis ED (2007) J Am Chem Soc 129:4620–4632

    Article  CAS  Google Scholar 

  36. Chang X, Zhang Y, Weng X, Su P, Wu W, Mo Y (2016) J Phys Chem A 120:2749–2756

    Article  CAS  Google Scholar 

  37. Scheiner S, Kar T (2002) J Phys Chem A 106:1784–1789

    Article  CAS  Google Scholar 

  38. Dykstra CE (1988) Acc Chem Res 21:355–361

    Article  CAS  Google Scholar 

  39. Masunov A, Dannenberg JJ, Contreras RH (2001) J Phys Chem A 105:4737–4740

    Article  CAS  Google Scholar 

  40. Hermansson K (2002) J Phys Chem A 106:4695–4702

    Article  CAS  Google Scholar 

  41. Qian WL, Krimm S (2002) J Phys Chem A 106:6628–6636

    Article  CAS  Google Scholar 

  42. Qian WL, Krimm S (2005) J Phys Chem A 109:5608–5618

    Article  CAS  Google Scholar 

  43. Cubero E, Orozco M, Hobza P, Luque FJ (1999) J Phys Chem A 103:6394–6401

    Article  CAS  Google Scholar 

  44. Li XS, Liu L, Schlegel HB (2002) J Am Chem Soc 124:9639–9647

    Article  CAS  Google Scholar 

  45. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  46. Bent H (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  47. Mo Y, Wang C, Guan L, Braïda B, Hiberty PC, Wu W (2014) Chem Eur J 20:8444–8452

    Article  CAS  Google Scholar 

  48. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  49. Mitoraj M, Michalak AA (2007) J Mol Model 13:347–355

    Article  CAS  Google Scholar 

  50. Mitoraj M, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962–975

    Article  CAS  Google Scholar 

  51. Buemi G, Zuccarello F (2002) J Mol Struct (THEOCHEM) 581:71–85

    Article  CAS  Google Scholar 

  52. Lipkowski P, Koll A, Karpfen A, Wolschann P (2002) Chem Phys Lett 360:256–263

    Article  CAS  Google Scholar 

  53. Jabłoński M, Monaco G (2013) J Chem Inf Model 53:1661–1675

    Article  Google Scholar 

  54. Jabłonński M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem A 110:10890–10898

    Article  Google Scholar 

  55. Jabłonński M (2000) MSc Dissertation, Nicolaus Copernicus University, Toruń, Poland

  56. Nowroozi A, Raissi H, Farzad F (2005) J Mol Struct (THEOCHEM) 730:161–169

    Article  CAS  Google Scholar 

  57. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  58. De Lange JH, Cukrowski I (2017) Towards deformation densities for intramolecular interactions without radical reference states using the fragment, atom, localized, delocalized and interatomic charge density decomposition scheme. J Comp Chem. doi:10.1002/jcc.24772

    Google Scholar 

  59. Cukrowski I (2015) Comp Theory Chem 1066:62–75

    Article  CAS  Google Scholar 

  60. Blanco MA, Pendás AM, Francisco E (2005) J Chem Theory 1:1096–1109

    Article  CAS  Google Scholar 

  61. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  62. McWeeny R (1992) Methods of molecular quantum mechanics, 2nd edn. Academic Press, London

    Google Scholar 

  63. Cukrowski I, Sagan F, Mitoraj MP (2016) J Comp Chem 37(32):2783–2798

    Article  CAS  Google Scholar 

  64. Ponec R (1997) J Math Chem 21:323–333

    Article  CAS  Google Scholar 

  65. Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Chem Eur J 13:9362–9371

    Article  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  67. Grimme S (2011) Wiley Interdisciplinary Reviews: Computational Molecular Science 1(2):211–228

    CAS  Google Scholar 

  68. Keith TA (2017) AIMAll (Version 16.10.31). TK Gristmill Software, Overland Park (aim.tkgristmill.com)

    Google Scholar 

  69. Polestshuk PM (2013) J Comp Chem 34:206–219

    Article  CAS  Google Scholar 

  70. Polestshuk PM (2013) J Chem Phys 139:054108

    Article  Google Scholar 

  71. Buijse MA, Baerends EJ (2002) Mol Phys 100:401–421

    Article  CAS  Google Scholar 

  72. Humphrey W, Dalke A, Schulten K (1996) J Molec Graphics 14:33–38

    Article  CAS  Google Scholar 

  73. Cukrowski I, de Lange JH, Adeyinka AS, Mangondo P (2015) Comp Theo Chem 1053:60–76

    Article  CAS  Google Scholar 

  74. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  75. Bader RFW, Essén H (1984) J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  76. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  77. Jenkins S, Morrison I (2000) Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  78. Feynman RP (1939) Phys Rev 56:340–344

    Article  CAS  Google Scholar 

  79. Tognetti V, Joubert L (2013) J Chem Phys 138(2):024102–024109

    Article  Google Scholar 

Download references

Acknowledgments

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number 105855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacy Cukrowski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift: A Path through Quantum Crystallography.

Electronic supplementary material

ESM 1

(PDF 1049 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cukrowski, I., van Niekerk, D.M.E. & de Lange, J.H. Exploring fundamental differences between red- and blue-shifted intramolecular hydrogen bonds using FAMSEC, FALDI, IQA and QTAIM. Struct Chem 28, 1429–1444 (2017). https://doi.org/10.1007/s11224-017-0956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0956-5

Keywords

Navigation