Skip to main content
Log in

Quantum-chemical investigation on 5-fluorouracil anticancer drug

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT with B3LYP/6-311++G(d,p) level were used for all calculations in this work. In biological system, 5-FU-3H2O has the highest stabilization energy compared to 5-FU-3NH3, 5-FU dimer, and 5-FU monomer. The chemical interactions of 2′-deoxyribose radical with uracil and 5-FU radicals to form 2′-deoxyuridine and 2′-deoxy-5-fluorouridine show that the difference in stabilization energies, ΔE, for their formation are quite low which facilitates the exchange reactions in DNA structure. Size, shape density distributions, and chemical reactivity sites of 5-FU were obtained by mapping electron density isosurface with electronic surface. Additionally, the intermolecular hydrogen bonding in 5-FU (sugar-phosphate) backbone system was simulated by NBO analysis to describe the role of intermolecular hydrogen bonding on the structure and chemical reactivity of 5-FU in biological systems. Molecular docking study of the interaction between 5-FU and human serum albumin (HSA) indicated that 5-FU binds to HSA with low affinity and low specificity compared to other anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. Longley DB, Harkin DP, Johnston PG (2003) Nat Rev Cancer 3:330–338

    Article  CAS  Google Scholar 

  2. Diasio RB, Harris BE (1989) Clin Pharmacokinet 16:215–237

    Article  CAS  Google Scholar 

  3. Edward Miller MD (1971) J Surg Oncol 3:309–315

    Article  Google Scholar 

  4. Valeriote F, Santelli G (1984) Pharmacol Ther 24:107–132

    Article  CAS  Google Scholar 

  5. Fallon III L (1973) Acta Cryst B 29:2549–2556

    Article  CAS  Google Scholar 

  6. Markova N, Enchev V, Timtcheva Z (2005) J Phys Chem A 109:1981–1988 and references herein

    Article  CAS  Google Scholar 

  7. Hocquet A, Leulliot N, Ghomi M (2000) J Phys Chem 104:4560–4568

    Article  CAS  Google Scholar 

  8. Evstigneev MP, Shestopalova AV (2014) Structure, thermodynamics and energetics of drug-DNA interactions: computer modeling and experiments. In: Grob L, Kuz’min V, Muratov E (eds) Application of computational techniques in pharmacy and medicine. Springer, Dordrecht Heidelberg, New York, Linden, pp. 21–58

    Google Scholar 

  9. Rouf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid MK (2005) J Pharm and Biomed Anal 37:205–217

    Article  Google Scholar 

  10. Blackburn GM, Gait MJ (1990) Nucleic acids in chemistry and biology. IRL press, New York, pp. 297–332

    Google Scholar 

  11. Qiu M, Wang GL, Wang HL, Xi HP, Hou D-N (2014) Struct Chem 25:1465–1474

    Article  CAS  Google Scholar 

  12. Jeffery GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  13. Patrick GL (2005) An introduction to medicinal chemistry, Third edn. Oxford University Press, New York, pp. 41–63

    Google Scholar 

  14. Costi MP, Ferrari S, Venturelli A, Caló S, Tondi D, Barlocco D (2005) Curr Med Chem 12:2241–2258

    Article  CAS  Google Scholar 

  15. Deepa P, Kolandaivel P, Senthilkumar K (2008) Biophys Chem 136:50–58

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT.

  17. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Becke AD (1996) J Chem Phys 104:1040–1046

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  22. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  23. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  24. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280 281-289

    Article  CAS  Google Scholar 

  25. Jamr’oz MH (2004) Vibrational energy distribution analysis VEDA4. Warsaw

  26. Dennington R, Keith T, Millam J (2009) Gauss view, Version 5. KS: Semichem Inc., Shawnee Mission

  27. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  Google Scholar 

  28. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  29. Flükiger P, Lüthi HP, Portmann S, Weber J (2000–2002) MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno, Switzerland.

  30. Portmann S, Lüthi HP (2000) Chimia 54:766–770

    CAS  Google Scholar 

  31. Morris GM, Goodsell DS, Holliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  32. Fukui K (1982) Science 218:747–754

    Article  CAS  Google Scholar 

  33. Kosar B, Albayrak C (2011) Spectrochim Acta Part A: Mol Biomol Spectrosc 78:160–167

    Article  Google Scholar 

  34. Pearson RG (1989) J Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  35. Greelings P, Proft FD, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  Google Scholar 

  36. Scrocco E, Thomasi J (1973) Topics in current chemistry, vol 42. Springer-Verlage, Berlin

    Google Scholar 

  37. Szafran M, Komasa A, Bartoszak-Adamska E (2007) J Mol Struct 827:101–107

    Article  CAS  Google Scholar 

  38. James C, Raj AA, Reghunathan R, Jayakumar VS, Joe IH (2006) J Raman Spectrosc 37:1381–1392

    Article  CAS  Google Scholar 

  39. Gustavsson T, Sarkar N, Bányász Á, Markovitsi D, Improta R (2007) Photochem Photobio 83:595–599

    Article  CAS  Google Scholar 

  40. Arivazhagan M, Meenakshi R, Prabhakaran S (2013) Spectrochim Acta Part A: Mol Biomol Spectrosc 102:59–65

    Article  CAS  Google Scholar 

  41. Luque FJ, López JM, Orozco M (2000) Theor Chem Accounts 103:343–345

    Article  CAS  Google Scholar 

  42. Arivazhagan M, Senthil Kumar J (2015) Spectrochim Acta Part A: Mol Biomol Spectrosc 137:490–502

    Article  CAS  Google Scholar 

  43. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  44. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  45. Kose E, Karabacak M, Atac A (2015) Spectrochim Acta Part A: Mol Biomol Scpectrosc 143:265–280

    Article  CAS  Google Scholar 

  46. Alcolea Palafox M, Tradajos G, Guerrero-Mantínez A, Vats JK, Joe H, Rastogi VK (2010) Spectrochim Acta Part A: Mol Biomol Spectrosc 75:1261–1269

    Article  CAS  Google Scholar 

  47. Kremer AB, Mikita T, Breadsley GP (1987) Biochemistry 26:391–397

    Article  CAS  Google Scholar 

  48. Becke AD, EdgeCombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  49. Kleinman DA (1962) Phys Rev 126:1977–1979

    Article  CAS  Google Scholar 

  50. Zhang R, Du B, Sun G, Sun Y (2010) Spectrochim Acta Part A: Mol Biomol Spectrosc 75:1115–1124

    Article  Google Scholar 

  51. Jayavarthanan T, Sundaraganesan N, Karabocak H, Cinar M, Kunt M (2012) Spectrochim Acta Part A: Mol Biomol Spectrosc 97:811–824

    Article  CAS  Google Scholar 

  52. Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  53. Sun Y-X, Hao Q-L, Wei W-X, Yu Z-X, Lu L-D, Wang X, Wang Y-S (2009) J Mol Struct (THEOCHEM) 904:74–82

    Article  CAS  Google Scholar 

  54. Del Bene JE (1982) J Phys Chem 86:1341–1347

    Article  CAS  Google Scholar 

  55. Harris DR, Macintyre WM (1964) Biophys J 4:203–225

    Article  CAS  Google Scholar 

  56. Perol F, Troitiṅo D (2010) J Mol Struct (THEOCHEM) 944:1–11

    Article  Google Scholar 

  57. Texter J (1978) Prog Biophys Mol Biol 33:83–97

    Article  CAS  Google Scholar 

  58. Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, Banáš P, Jurečka P, Otyepka M (2012) Phys Chem Chem Phys 14:15257–15277

    Article  Google Scholar 

  59. Hokmabody L, Raissi H, Khanmohammadi A (2016) Struct Chem 27:487–504

    Article  Google Scholar 

  60. Lönn U, Lönn S (1984) Cancer Res 44:3414–3418

    Google Scholar 

  61. Noordhuis P, Holwerda U, Van der Wit CL, Van Greoningen CJ, Smid K, Meijer S, Pinedo HM, Peters GJ (2004) Ann Oncol 15:1025–1032

    Article  CAS  Google Scholar 

  62. Ptasińska S, Denifl S, Mróz B, Probst M, Grill V, Illenberger E, Scheier P, Märk TD (2005) J Chem Phys 123:124302–124307

    Article  Google Scholar 

  63. Denifl S, Ptasínska S, Gstir B, Scheier P, Märk TD (2004) Int J Mass Spectrom 232:99–105

    Article  CAS  Google Scholar 

  64. Neumȕller W, Hȕtterman J (1980) Int J Radiat Biol 37:49–60

    Google Scholar 

  65. Denifl S, Ptasińska S, Probst M, Hruṧẚk J, Scheier P, Märk TD (2004) J Phys Chem A 108:6562–6569

    Article  CAS  Google Scholar 

  66. Bacchus-Montabonel M-C, Tergiman YS (2012) Comput Theor Chem 990:177–184

    Article  CAS  Google Scholar 

  67. Baccarelli I, Bald I, Gianturco FA, Illenberger E, Kopyra J (2011) Phys Rep 508:1–44

    Article  CAS  Google Scholar 

  68. Bald I, Illenberger E, Kopyra J (2012) J Phys: Conference Series 373:012008

    Google Scholar 

  69. Petersilka M, Gossmann UJ, Gross EKU (1966) Phys Rev Lett 76:1212–1215

    Article  Google Scholar 

  70. He XM, Carter DC (1992) Nature 358:209–215

    Article  CAS  Google Scholar 

  71. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR (2002) Biochem Pharmacol 64:1355–1374

    Article  CAS  Google Scholar 

  72. Dugaiczyk A, Law SW, Dennison OE (1982) Proc Natl Acad Sci U S A 79:71–75

    Article  CAS  Google Scholar 

  73. Ishtikhar M, Rabbani G, Khan RH (2014) Colloids Surf B: Biointerfaces 123:469–477

    Article  CAS  Google Scholar 

  74. Yamashita S, Suda Y, Masada M, Nadai T, Sumi M (1989) Chem Pharm Bull 37:2861–2863

    Article  CAS  Google Scholar 

  75. Fraile RJ, Baker LH, Buroker TR, Horowitz J, Vaitercius VK (1980) Cancer Res 40:2223–2228

    CAS  Google Scholar 

  76. De Aspuru EO, Zantón AML (1993) J Biochem Biophys Methods 27:87–94

    Article  Google Scholar 

  77. Bertucci C, Ascoli G, Uccello-Barretta G, Bari LD, Salvadori P (1995) J Pharm Biomed Anal 13:1087–1093

    Article  CAS  Google Scholar 

  78. Zatón AM, Ferrer JM, de Ruiz Gordoa JC, Marquínez MA (1995) Chem Biol Interact 97:169–174

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refaat M. Mahfouz.

Electronic supplementary material

ESM 1

(DOCX 2478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.S., Dahy, A.A., Hassan, G.S. et al. Quantum-chemical investigation on 5-fluorouracil anticancer drug. Struct Chem 28, 1093–1109 (2017). https://doi.org/10.1007/s11224-017-0913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0913-3

Keywords

Navigation